RAPID ACCESS DISC FILE (RAD) MODELS 9367B AND C TRAINING DOCUMENT OCTOBER 1967 FOR TRAINING PURPOSES ONLY #### SECTION 1 #### GENERAL DESCRIPTION #### GENERAL The SDS Rapid Access Disc File Model 9367C (RAD) is manufactured by Scientific Data Systems 1649 Seventeenth Street Santa Monica California. The contents of this manual describe the electrical and mechanical characteristics of the SDS 9376C its operation and basic programming requirements, theory of operation and installation. #### PURPOSE OF EQUIPMENT The SDS Rapid Access Disc File Model 9367C system provides on-line, rapid access, auxiliary data storage for the SDS 92,925,930 and 9300 Computers. Storage capacity is modular, ranging from 524, 288 characters to 1,048576 characters per unit. As many as four storage units may be accommodated in the system. The average transfer rate is approximately 485,000 alphanumeric characters a second. The SDS Disc File Model 9367 is implemented through an Input/Output buffer with Interlace and 12-bit character extension features as prerequisites. # EQUIPMENT FUNCTIONS Each SDS 9367C RAD sytem consists of four basic functional parts: - a) one disc file coupler (controller) - b) one to four disc storage units - c) one to four disc selection units - d) one power protection panel The disc file coupler acts as a controller and intermediary between the data disc units and the Input/Output channel. Data is assembled or disassembled and transferred between these units under control of the coupler - 1. COUPLER - 2. POWER FAIL SAFE CHASSIS - 3. BASIC DISC SELECTION UNIT - 4. SELECTION UNIT LOGIC - 5. DISC STORAGE UNIT - 6. POWER SUPPLY PX13/PX14 - 7. DISC EXTENDER UNIT - 8. WRITE PROTECT SWITCH PANEL FIGURE 1-1 MODEL 9367C RAPID ACCESS DISC FILE The disc storage units contain mass data in digital form stored under control of the Input/Output channel and the disc file coupler which is randomly retrievable in blocks of 256 alphanumberic characters. # POWER PROTECTION PANEL The Power Protection Panel is mounted near the Coupler Unit in the existing computer. Two transformers step down the 115 vac primary voltage to 10 vac signals. These signal voltages are connected to detector modules in the Coupler Unit. The selection units contain the selection and comparison circuits required for accesing the addressed data as well as the read/write circuits and basic timing and registration circuits. 0^{NSC} The modular characteristics of the SDS 9367C RAD system permit expansion of the disc storage units and selection units from one to four. Figure 1-2 describes a SOS 9367C RAD System with maximum storage capabilities. ## SYTEM CONFIGURATIONS Two different basic disc memory sizes available with the SDS 9367C Rapid Access File system are listed in Table 1-1. Model 9367C-01 131,072 word capacity, 2discs (524,288 alphanumeric characters) Model 9367C-02 262,144 word capacity, 4 discs (1,048,576 alphanumeric characters) Table 1-1, Basic Storage Unit Models Additional memory is available by adding from one to three extenders to the basic Storage Unit. The available supplemental memory options are listed in Table 1-2. RAD SYSTEM CONFIGURATION MODEL 9367 C-(01 - 42) B= ORUM - OA Copractic Model 9367C-11 131,072 word capacity, 2 discs (524,288 alphanumeric characters) 262,144 word capacity, 4 discs Model 9367C-12 (1,048,576 alphanumeric characters) Table 1-2, Storage Extender Models # MECHANICAL CHARACTERISTICS Each storage unit or extender comprises two or four discs, a motor control circuit, a shroud for mounting read/write heads, a dust cover and front panel, and support for mounting the unit to the cabinet. It has head mounting boards and mounting fixtures for 16, or 32 head boards depending upon the memory size. In addition, it has head mounts for two special timing tracks. The cables from the basic storage unit to the selection unit are hardwired to the selection unit. One selection unit is required for each disc storage unit. The basic disc file and its selection unit are located in a separate cabinet and are connected to the coupler via a thirty foot cable. The basic selection unit comprises three module chassis. Additional extender cabinets are located adjacent to the first, and are connected by 6-foot cables from one unit to the next in a serial manner. The coupler consists of four module chassis and comprises the interface between the selection units and the computer input-output channel. The cables from the coupler to the channel are part of the coupler measures 19 inches and mounts in the input-output cabinet. Where space in the input-output cabinet is insufficient, the coupler may be mounted in a separate cabinet. #### POWER REQUIREMENTS In model 92, 930 and 9300 computer systems using the PX13 power supplies, and ac input of 1.9 amp unregulated is required for coupler operation. In models 92, 925, 930 or 9300 computer systems using PX22/PX23 power supplies, the regulated ac input requirement is 1.74 amp. Each disc file configuration has a different total power requirement. The basic storage and selection unit requires an ac input of 7.2 amperes. The requirement is increased by 1.25 amperes for each extender unit added to the system. The extender units have an ac input power requirement of 6 amp each. # DISC ORGANIZATION AND TIMING CHARACTERISTICS The disc storage units are organized by discs, disc surfaces, bands, tracks, sectors and words. Storage unit organization is described in tables 1-3. Table 1-4 describes the mechanical and timing characteristics of the disc units. # MODULE COMPLEMENT The 9367C coupler consists of four module chassis. The coupler module complement is listed in table 1-5. The selection unit consists of three module chassis. Its module complement is given in table 1-6. #### GENERAL INFORMATION FLOW The general information flow from the computer to the disc storage unit during write operations, and the flow from the disc storage unit to the computer during read operations, is shown in figure 1-3. A 15-bit address register is loaded from the computer memory through the C register with data that designates the selection and storage unit, the disc, the band, and the sector address of the information to be transferred. A 12-bit character register buffers the data between the coupler and the I/O channel during both read and write operations. The 12-bit character is assembled (for reading) of disassembled (for writing) by the 12-bit assembler disassembler which acts as a 3x4 serial-parallel register. Information flow from one of four selection units is controlled by a unit selection register in the coupler. Each selection unit has the capability of protecting memory areas in groups of 32,768 words under manual switch control. If a memory protect switch is in the "up" position, any attempt to write in an area of disc memory corresponding to the switch address will be aborted. The memory protection switches do not inhibit reading from any memory area. FIGURE 1-3 9367C DISC FILE SYSTEM - GENERAL DATA FLOW DIAGRAM | Discs per Storage Unit | 2 or 4 | |-------------------------------------|---------------------| | Heads per Disc | 64 | | Heads per Disc Surface | 32 | | Heads per Band | 4 | | Bands per Disc | 16 | | Sectors per Band | 64 | | Words per Sector | 64 | | Timing tracks per Unit | 2 | | Timing cracks per onic | 2 | | Table 1-3 Storage Disc Organization | n | | Disc Rotational Speed | 1782 rpm | | Maximum Recording Diameter | 11.0 in. | | Minimum Recording Diameter | 19 2 8.9 in. | | Tracks per Radial Inch | 30 | | Track Width | 0.02 in. | | Track Pitch | 0.033 in. | | Sector Time | /487 usec | | Gap Time Between Sectors | (40 usec | | Sector plus Gap Time | 527 usec / (yet) | | Bit Rate | 820 KHZ | | Bit Density | 980 b/i max | | Word Transfer Rate | 133 kwds/sec | | Character Transfer Rate | 266,000 12-bit ch/s | | Table 1-4 Storage Disc Mechanical a | and Timing | | Characteristics | | | Number of | Type of | Name of | | |-----------|--------------|------------------------|--| | Modules | Modules | Module | | | 5 | AH10 | Signal Amplifier | | | 5 | AX14 | Cable Driver | | | 2 | AX 16 | Cable Driver | | | 10 | BH10 | Buffer Amplifier | | | 5 | FH19 | DC Flip-Flop | | | 13 | FH 20 | Basic Flip-Flop | | | 1. | FL21 | Basic Flip-Flop | | | 19 | CK51 | Diode Cate | | | 2 | III10 | And/or Inverter | | | 8 | III14 | Inverter Amplifier | | | 1 | MX 1 2 | Relay Module | | | 1 . | OX12 | One-Shot Multivibrater | | | 2 | SKo0 | Primary Power Detector | | Table 1-5 Coupler Module Complement | Number of
Modules | Type of
Module | Name of | |----------------------|-------------------|------------------------| | Hodgles | Module | Module | | 1 | A 77 C 3 | | | 1 1 | AK61 | Read Input Control | | 2 | AK62 | Y-Select | | 16 | AK63 | Write Driver | | 1 | AK 64 | Index/Sector Amplifier | | 3 | AX 14 | Cable Driver | | 1 | AK65 | Write Clock Amplifier | | 1 | BH10 | Buffer Amplifier | | 4 | FL21 | Basic Flip-Flop | | 1 | GH14 | Gate Expander | | 4 | нк73 | Read Amplifier | | 4 | нк74 | Limiter | | 4 | HK 76 | Data Decoder | | 4 | HK 7 5 | Clock Discriminator | | 1 | HK77 | Index/Sector Decoder | | 1 | IH14 | Inverter | | 1 | IL12 | Inverter | | 4 | NK59 | Read-Write Decoder | | 1 | OX 1 2 | One-Shot Multivibrator | | 1 | SX69 | Primary Power Detector | Table 1-6, Selection Unit Module Complement SECTION II PROGRAMMING #### SECTION II #### GENERAL The following discussion of basic programming for the Rapid Access Disc File Model 9376 system applies primarily to the SDS 925/930/9300 computers. The relatively minor difference in programming methods required by the SDS 92 computer will be found in the SDS Reference Manual, 900505B. In general, however, the basic techniques of programming for the RAD system apply to all SDS 900 Series computers including the SDS 92. ### INSTRUCTION CLASSIFICATION Four classes of input-output instructions are required to operate the RAD System and its associated buffer. These
instruction classes are: E OM SKS POT PIN The assigned ECM and SKS address to direct all RAD operations is 26 octal. Thus, the two least significatint octal digits of any EOM instruction addressing the RAD is 26 for imput operations (reading), or 66 for output operations (writing). #### EOM INSTRUCTIONS # ALERT TO PIN The Alert to PIN instruction takes the form EOM 1N226. This instruction operates in the I/O mode and alerts the addressed storage unit that a PIN instruction is to follow. Octal digit "N" addresses one of the four disc storage units, where N=O addresses storage unit 1; N=2 addresses storage unit 2; N=4 addresses storage unit 3; and N=6 addresses storage unit 4. #### ALERT TO POT The Alert to POT instruction takes the form EOM 10026. This **EOM** instruction operates in the I/O mode and alerts the disc coupler that a POT instruction is to follow. This EOM is always followed by a POT that will always be processed, and the band selection matrix will always be set up to the new address at the next sector mark. Gaps can be detected by the Disc Ready SKS 10026 after an operation has been initiated. #### NON-INCREMENT MODE No incrementing of band will follow Alert to POT EOM 11026. This EOM or EOM 11066 is used in the special case that a full band is being transferred, starting at an arbitrary sector, and band incrementing is not desired after sector 778. The computer will be programmed to disconnect at sector 778, but only reconnecting and resetting of interlace is required to complete the band transfer, as the A register retains the address of the previously transferred sector +1, and another alert EOM POT is not required. ### CONNECT DISC MEMORY, READ The Connect Disc Memory, Read instruction takes the format EOM02226. This EOM instruction operates in the buffer mode and establishes the character packing format of two 12-bit characters per word, and initiates the **read** operation when the sector corresponsions to the contents of the sector address register comes under the read head. Two 12-bit characters are transferred for each interlace memory access. Proper programming practice dictates that this instruction be preceded by an ALC, EOM (IOC), POT sequence. The ALC and POT are needed to set up the interlace and the IOC type EOM is used to specify the IOSD termination mode. #### CONNECT DISC MEMORY, WRITE The Connect Disc Memory, Write instruction takes the form EOM02266. This EOM instruction operates in the buffer mode and establishes the character packing format of the two 12-bit characters per word, and initiates the write operation when the sector corresponding to the contents of the sector address register comes under the write head. Two 12-bit characters are transferred for each interlace memory access. Like the Connect Disc Memory, Rhand command, this instruction must also be preceded by the same ALC, Will (IOSD), POT sequence. #### SKS INSTRUCTIONS #### SKIP IF DISC READY The Skip if Disc Ready instruction takes the form SKS 10026. This instruction will cause the computer to skip the next normally sequenced instruction if the coupler is not currently engaged in a read or write operation. #### SKIP IF NO DISC ERROR The Skip If No Disc Error instruction takes the form SKS 11026. This instruction will cause the computer to skip the next normally sequenced instruction if no error condition exists. An error condition can exist for any of the following reasons: - A) An attempt has been made to write into a protected area of disc memory - B) A POT instruction addressing the RAD system was executed while the unit was in the process of reading or writing - C) An attempt was made to continue operation after the final sector of a storage unit had been written or read. #### SKIP IF SAND NOT WRITE PROTECTED This instruction takes the form SKS 13026. The program skips the next normally sequenced instruction if the segment being addressed is not write protected by the memory protection switches. The program does not skip if the segment being addressed is write protected. The status of the memory protection switches can be tested by executing an Alert to POT, followed by a POT instruction addressing the memory area under question, programming a delay of microseconds, and then followed with SKS 13026. The delay is required because the register which is tested with the switch logic is not filled until the sector mark following the POT instruction. # POT INSTRUCTION The execution of a POT instruction following an Alert to POT fills the coupler address register with the contents of the specified memory word. At the next sector pulse the band field of the coupler address register is transferred to the matrix register in the Selection unit, replacing the band address from the previous operation. #### PIN INSTRUCTION The execution of a PIN instruction following an Alert to PIN results in the transfer of the contents of the sector counter (which contain the address of the current sector) of the disc unit specified in the Alert to PIN EOM to the specified memory location. The sector address appears in bit 18 through 23 of the memory word; the contents of bits 0 through 17 are not significant. The information contained in the memory word includes the address of the disc storage unit, the disc, the band, and the sector | LOCATION | INSTRUCTION | ACTION | |----------|-------------|---| | 01202 | SKS 10026 | Skip if disc ready | | 01203 | BRU 01202 | Loop until ready | | 01204 | EOM 10026 | Alert to POT | | 01205 | POT 01213 | POT address to coupler Unit | | 01206 | EOM 50000 | Alert channel interlace | | 01207 | EOM 17200 | IOSD Termination mode Also arms end of record and word count zero interrupt | | 01210 | POT 01214 | POT to interlace register | | 01211 | EOM 02226 | Connect disc memory, read | | 01212 | BRU | Exit and wait for interrupt | | 01213 | 00000773 | | | 01214 | 30012707 | Word count and starting core address | #### SAMPLE READ PROGRAM The listing shown in Table 2-1 is a simplified programming example intended to clarify some of the steps required to read information from the disc file into the core memory of the computer. It does not demonstrate sophisticated programming techniques. The sample program reads sectors 00773 through 01000 (384 words) into core locations through 13506. Each step of this listed program is explained in detail in the following paragraphs. The SKS instruction located in 01202 tests the RAD coupler for a ready status. If the coupler is busy in either a read or write operation, the program takes its next instruction from location 01203 which causes the computer to branch back to 01202 forming a two word loop until the disc coupler is no longer busy. When the coupler is ready the program sequences to location 01204 for its next instruction. The EOM instruction located at 01204 operates in the I/O mode, and alerts the disc coupler that a POT instruction is to follow. The POT instruction at 01205 transfers the contents of memory location 01212 to the address register of the coupler. The contents of the word transferred (00000773) represents the address of the first sector to be read and transferred to computer memory. (Unit 0, Band 07, Sector 73) The EOM instruction located at 01206 operates in the input output control mode and selects the I/O channels (the W buffer in this example) and alerts its interlace that an EOM (IOC) and POT are to follow. The ROM instruction located at 01207 operates in the I/O mode and establishes the IOSD extended mode operation (mandatory for Reading, or writing), and arms both the zero word count (IIW) and end of record interrupts (I2W) If only one interrupt is to be used, it should be I2w which will always occur. If IIw only were used and the operation were aborted due to an error condition occurring prior to a zero word count condition, the IIw interrupt would not occur. The POT instruction located at 01210 transfers the contents of core memory location 01204 to the I/O channel interlace. The interlace word contains in bit 0 through 9 a binary number equal to the number of words to be transferred. Bits 10 through 23 of the interlace word contain the address of the first of 384 core memory locations into which the disc data are to be transferred. If the interlace word count exceeded the 10 bit field the most significant 5 bits would be held in bit 19-23 of the IOSD EOM located in location 01207. Likewise if the starting core memory address required the most significant bit it would be in bit 18 of the same EOM. The EOM instruction located at 01211 operates in the buffer **control** mode and selects the I/O channel (W in this example) and connects the coupler to operate in the two character per word mode without leader. The read operation starts 16 microseconds after the sector mark of the addressed sector. The connect instruction is programmed. Last in order to avoid a computer hang-up condition. If the I/O channel is connected and the Ecw signal (device clock) is sent before the interlace is set up, the computer does not receive the proper signal (Rt) from the channel in response to the interlace POT. This signal is needed the release the computer from the wait phase of the POT command. Thus the safe procedure is to set up the interlace first. The parameters required to initiate a disc to core transfer have been established. The branch instruction located in 01212 returns program control back to the main program. When the interlace word count reaches zero the interrupt subroutine should then test for any errors that may have occured during the reading and transfer of the data. If the end of record interrupt occurs first, an error obviously occurred and appropriate actions should be taken. # PARTIAL SECTOR READ OR WRITE It is not necessary that entire sectors of 64 words be written or read. However, certain restructions are placed upon the program if less than a complete sector
is to be transferred. For example, if in the sample read program the programmer wanted to read only 32 words of sector 773, he would change the contents of the interlace word 1214 to 02012707 octal. When the buffer word counter reaches a count of zero, the buffer initiates a disconnect and will accept no more data from the disc coupler unit. If less than a complete sector is written or read, the word boundary ranges from the first word. It is not possible, for example, to read or write the last 32 words of a sector without reading or writing the first 32 words of the sector. If less than 64 words are to be written into a sector, the data in all words following the final data word written will be changed to zeros. If, for example, data is written into only the first 20 words of a sector, the remaining 44 words will be written with all zeros. #### IMMEDIATE MODE ACCESSING Whenever one complete band (64 sectors) is to be transferred, access time can be reduced to a minimum by special programming techniques. If the program addresses the disc file system at random (i.e., without determining where sector 00 happens to be at the time of initiating the transfer) the access time could be as long as 33 milliseconds. For example, if the program is written to read sector 00 through 77, and sector 13 is under the read/write heads at the time the transfer is initiated, about 30 milliseconds will be spent before sector 00 comes under the heads and the transfer can begin. During these 30 milliseconds the I/O channel cannot be used for other input-output purposes. This delay can be eliminated if the program is written in such a manner that the complete 64 sector band can be read in two separate passes; the first pass to read sector n through 77, and the second pass to read sectors 00 through n-1, where n equals the first sector available to the disc storage unit. The starting address in in the immediate mode is obtained by executing a PIN instruction to determine the current sector address, and by adding two to this address. For example, if the PIN instruction indicates that sector 23 is about to come under the read/write heads, the first pass should indicate a transfer of sector 25 through 77, and the second pass should indicate a transfer of sector 00 through 24. Normally, if 64 sectors are to be transferred and the starting address n does not equal 00, the band address will count up as the sector address changes from 77 to 00. This must be prevented by placing a one in bit position 14 of the alert to POT instruction. When issuing the first transfer (current sector \$\darking{\pmathbb{\pmath}\pmathbb{\pmathbb{\pmathbb{\pmathbb{\pmathbb{\pmathbb{\pmathbb{\ #### PRIORITY INTERRUPT OPTION Access time can also be reduced by use of the priority interrupt option. This option allows the program to set up initial transfer conditions without connecting the buffer. This permits the selection unit and coupler to search for the first disc address to be transferred without tying up the I/O channel. About 28 microseconds before the addressed sector becomes available to the selection unit, the interrupt occurs. The interrupt subroutine connects the coupler with a Connect to Read or a Connect to Write instruction. #### SECTION III #### THEORY OF OPERATION #### INTRODUCTION This section of the manual provides theory of operations for the SDS Rapid Access Disc File Model 9367C. The theory of operation is divided into two main sections in the following order: - a. General Theory of Operations - b. Logic Description The General Theory of Operations describes in non-specific terms the component parts of the coupler, the selection unit, and the disc storage unit, as well as the general timing and data flow for each of the system operations. The Logic Description describes in more specific terms those subjects covered under the general theory, and provides the logical timing, control, and flow equations as will as detailed flow charts and timing diagrams. Special circuit considerations are also discussed in this section. # GENERAL THEORY OF OPERATIONS #### DISC FILE STORAGE UNIT Each disc file storage unit consists of four discs that rotate on a common shaft. The discs are made of a non-ferrous metal, plated with a nickel-cobalt coating having magnetic properties. Disc drive is provided by a 115vac, 60 cps, single phase, induction motor directly connected to a common drive shaft. The motor requires 120 seconds maximum to come up to operational speed of 1780 rpm after power is first applied. No interlock exists to prevent reading or writing during this acceleration time. The read/write heads are mounted on head boards, eight heads to each board, and are arranged at 90° intervals around the top and bottom surfaces of each disc. Rotation of the disc creates an air flow in close proximity to the disc surface and the dimensionally controlled flying surface of the heads uses this air flow to maintain an air slider bearing that sustains the heads out of physical contact with the disc surface at a uniform spacing of less than .00002 inches. This spacing is not affected by disc runout or by thermal shock. When the unit is at rest, the heads, which are suspended by two pivot bearings on an adjustable flexible reed, make contact with the disc surface. Each disc mounts 64 heads, 32 on the top surface and 32 on the bottom surface. Data is written four bits in parallel on the disc, and therefore, four heads must be selected for both read and write operations. Each of the four heads reads or writes a track; four tracks make up one band. One band of four tracks extends for 360°, or for the entire disc circumference. Discs are addressed octally as 0, 1, 2 and 3, but are usually referred to as discs 1, 2, 3 and 4 respectively. Fight heads composing two bands are mounted on each head board. The four outer heads on each head board are identified as heads 1, 2, 3 and 4, and are connected by a common center tap, CT14. four inner heads on each head board are identified as heads 5, 6, 7 and 8, and are connected by a common center tap, CT58. Start and finish windings of the corresponding inner and outer heads are wired in parallel and are identified as S15, S26, F26, S37, F37, and S48, F48. See Figure 3-1. Heads are selected on an X-Y coordinate; the center taps selected by Y select modules and the start and finish windings by the Read/Write Decoder modules through X selection gates. Eight head boards, all mounted on each disc, four on the upper surface, and four on the lower surface. Figure 3-2 shows the head placement on each of the four discs. Note that the top disc, Disc 1, also mounts three special read heads for timing and registration purposes. One reads the sector and index marks and the others read two identical clock tracks. These heads are not selectable through the X-Y matrix. Note that all odd numbered head boards service the upper disc surfaces while all even numbered head boards service the lower disc surfaces. All head boards are dimensionally identical with each other. The eight heads on each of the head boards would lie on a circular line equidistant from the center of the disc if some provision was not made to prevent this overlapping. Head boards HB5 and HB6 are mounted on a common head board assembly fixture. A single shim is inserted between this head board assembly fixture and the disc housing, displacing the tracks of HB5 and HB2 which are not shimmed. Two shims are used for HB9 and HB10 assembly fixture, and three shims are used for HB13 and HB14 assembly fixture. In this manner, the tracks of all head boards are interlaced with each other. Table 3-1 shows the head board selection method as the addressed bands (bits 12 through 17 of the address register) progresses from 00 through 77. # LEGEND CT 14 - CENTER TAP, HEADS | THROUGH 4 CT 58 - CENTER TAP, HEADS 5 THROUGH 8 S 15 - START WINDING, HEADS 1 AND 5 F 48 - FINISH WINDING, HEADS 4 AND 8 FIGURE 3-1 HEAD BOARD CONNECTIONS FIGURE 3-2 HEAD BOARD PLACEMENT | Address | <u>HB</u> | | Address | НВ | |---------|------------
---|----------------|------| | U00SS | 01 | | U20SS | 05 | | U01SS | 33 | \
\ | U21SS | 37 | | U02SS | 19 | | U22SS | 23 | | U03SS | 51 | | U23 SS | 55 | | U04SS | 01 | · • • • • • • • • • • • • • • • • • • • | U24SS | 05 | | U05SS | 33 | | U25SS | 37 | | U06SS | 19 | | U26SS | 23 | | UO7SS | 51 | | U27SS | 55 | | U10SS | 02 | | U30SS | 06 | | U11SS | 34 | | U31 SS | - 38 | | U12SS | 20 | | U32SS | 24 | | U13SS | 52 | | U33SS | 56 | | U14SS | 02 | | U34SS | 06 | | U15SS | 34 | | U35SS | 38 | | U16SS | 20 | | U36SS | 24 | | U17SS | 52 | | U37SS | 56 | | U40SSS | 0 9 | | U60SS | 13 | | U41SS | 41 | | U61SS | 45 | | U42SS | 27 | | U62SS | 31 | | U43SS | 59 | | U63SS | 63 | | U44SS | 09 | | U64SS | 13 | | U45SS | 41 | | U65SS | 45 | | U46SS | 27 | | U66SS | 31 | | U47SS | 59 | | U67SS | 63 | | U50SS | 10 | | U70SS | 14 | | U51SS | 42 | | U71SS | 46 | | U52SS | 28 | | U72SS | 32 | | U53SS | 60 | | U73SS | 64 | | U54SS | 10 | | U74SS | 14 | | U55SS | 42 | | U75SS | 46 | | U56SS | 28 | | U 76 SS | 32 | | U57SS | 60 | | U77SS | 64 | * U = any selection unit address SS = any sector address Table 3-1 Band Address and Head Board Relationship #### Disc Data Format #### Sector Format Each band, which is composed of four tracks, contains 64 sectors spaced equidistant around the disc, dividing the disc circumference into 64 equal parts. At a rotational speed of 1780 rpm each sector requires 527 us to pass under the read/write heads. These 527 us are divided into five major parts; gap, preamble, parity, postamble, and data. Each sector is sequentially composed of a 13 clock time leading gap, a 10 bit/track preamble, 64 words of data, a 1 bit/track parity, a 11 bit/track postamble, and a trailing gap. See Figure 3-3. Each sector starts when the sector index pulse counts up the sector counter (D register), and ends when the next sector index pulse arrives. See Figure 3-4. #### Word Format Four bits of each word are written simultaneously on the four tracks that make up a band. Consider the computer word to be 8 octal digits, the most significant called 0 and the least significant called 7. See figure 3-3. The binary information contained in a word is extracted in such a manner that the octal digits 0 and 4 are written on track 1, octal digits 1 and 5 on track 2, octal digits 2 and 6 on track 3, and octal digits 3 and 7 on track 4. The placement of the binary digits of the word in relation to the tracks is shown in Figure 3-3. Page 24 Figure 3-4 Sector Format and Timing #### Disc File #### Selection Unit One selection is used with each disc storage unit, and is mounted in the same cabinet with the storage unit. One incoming control cable from the Coupler Unit (mounted in the computer) is used to control the Selection Unit. An output cable is connected between the Basic Storage Unit and the Extender Storage Unit (if used). The power supplies in the Basic Disc Storage Unit have sufficient capacity for one Extender Storage Unit. If additional storage capacity is required, connect a second Basic Storage Unit to the system to provide dc operating voltages for the third storage unit, and the fourth storage unit (if used). The Selection Unit contains the read/write selection matrix, the write drivers, the read input control moudle, and four read-write decoders, read preamplifiers, and limiters. Table 1-6 lists the modules used in the Selection Unit. Figure 4-7 shows the location of all modules used, including interconnecting cable plug modules. The clock and timing circuit modules are included in the Selection Unit. See Figure 3-7. Storage capacity determines the quantity of Y Select Modules in use. One module is required for each 64 heads, or 2 modules for each 128 heads in the storage unit. Storage capacity may be increased in the field by increasing the capacity of the smaller discs, but additional Y Select Modules must also be installed at the same time. ## Selection Matrix The selection matrix in the Selection Unit, for a 256 head disc memory storage unit (64 bands), consists of four Y-Select circuits on each of four Y-Select Modules AK 62 and four read/write coupler circuits on each of four Read-Write Decoder Modules NK59 to provide a 16 x 16 X-Y coordinate matrix to select the 256 possible head combinations in one storage unit. The X and Y selection circuits receive their information in gated form from the address register (A) located in the Coupler unit and from the matrix register (A) in the Selection unit. This matrix register is a duplication of bits All through Al5 of the coupler address register. The address register, in turn, receives the initial address from the C register in the computer, bits 9 through 23, during the POT instruction. Bits A18 through A23 represent the address of the sector; bits A9 and A10 address one of the possible four storage units, and bit A11 is always a zero in the 9367C. It is used only in the larger capacity 9367B. Bits A11 through A17 are used to select the proper read/write heads. Each address in bits A11 through A17 activates one of the 16 Y Selectors and four of the X selectors so that four X-Y coordinates exist to select the four read/write heads of the addressed band. See Figure 3-5. #### Write Drivers and Write Flip Flops The Selection Unit contains 16 Write Driver Modules AK63 and a Write Flip Flop Module FL21 containing four write data flip flops. For any given band address the data bits in the four write flip flops must be gated to one group of four of the 16 write drivers. This write driver group is selected by address register bits 16 and 17. Thus the write drivers and their associated gates constitute the X selection circuits used during writing. The write flip flops are varied in such a manner that they unconditionally change their state every 1.2 microseconds and at the clock pulse which occurs between these toggle changes, the flip flop will sample the data bit and either set or reset accordingly. See Figure 3-6. The recording scheme is a phase recording type sometimes called Manchester, Ferranti, Frequency Modulation, Modified Non Return to Zero, or Double Transition. Flux changes may occur as often as every 600 ns although some may be omitted. When reading back the flux changes are sampled for polarity only every 1.2 microseconds at the clock time. The polarity determines the bit significance. #### Read Input Control The Read Input Control module AK61 uses the two least significant bits of the address, A16 and A17, to select the four heads to read. The center taps to select the four heads to read. The center taps of the heads are still PACE THAT SELECTION SELECTION STATE OF 1849 selected by the Y selection circuits. The Read Input control circuits select the proper heads by enabling the proper four read Transformers. Thus the four Readrd Input control circuits and the 16 associated read transformers constitute the X selection circuits used during the read operation. #### Read Modules The read modules consist of four Read-Write Decoder Modules NK59, which contain the read transformers and which are used to separate the write and read circuits from the common head; the four Read Preamplifier Modules HK73 which amplify and square the read signal to square-wave pulses of approximately 2 volts; the four Limiter Modules HK74, which limit the read pulses to essentially this same level; and the four Data Decoder Modules HK76 which decode the recorded data and set the four Read flip flops accordingly. This data is then sent to the Character Assembler register in the coupler where it is assembled into a 12 bit computer half word. #### Timing Circuits The basic timing (clocks) for the read function is taken from the data by the four Clock Discriminator Modules HK75. The timing (clocks) for the write function is taken from the timing track located on the outer edge of the top disc of each storage unit. These pulses from the prerecorded timing marks from the timing head (WCH) are counted down by two in a flop-flop to produce a clock pulse every 1.2 microseconds called WCK. The amplified timing head signal (WCA) and the half-frequency signal (WCK) are used during the write function to provide internal timing and to provide a source of clock signal to generate the Manchester type of recording pulse. Note the delay between writing and reading of the same bit as shown on Figure 3-6. This delay between the read and write functions is caused by the requirement to wait at least one pulse before mixing the Manchester code, and the necessity to wait at least one pulse for the read clock, derived from the data itself. These two separate timing circuits are required to eliminate any skew which might exist. Another timing pulse amplifier reads the pulses from the other timing track located on disc 1 of each disc storage unit. This timing track contains 64 pulses distributed equally around the circumference of the disc. The purpose of this pulse is to clock the sector counter to allow it to count in READ - WRITE DATA TIMING DIAGRAM アイドックド スーム step with correspondingly numbered sectors on the discs as they pass under the read/write heads. One of these 64 sector pulses is a double doublet rather than a single doublet. This is decoded in the Index/Sector Decoder module HK77 and is called the Index pulse (IDX), thus leaving only 63 sector pulses (SEC). The purpose of this index pulse is to establish the location of sector 00 on each disc unit, and to reset the contents of the sector counter register (D) to zero. #### Sector Counter The sector counter (D register) is composed of six flip-flops designated as D01 through D06. This register is set initially to zeros by the index mark when power is first applied to the disc storage unit, and is counted up by one each time a sector pulse is detected. Thus, this register counts octally from 00 to 77 and contains the address of the sector under the read/write heads. The contents of the D
register are gated into the computer C register, bits C18 through C23, during a PIN instruction. # Sector Comparison Gates The six bits of the address register making up the sector address (A18 through A23) are continually being compared with the six bits of the sector counter register. When the sector addresses of these two registers are equal, a sector comparision term (SAC) comes true. When SAC is true, the next sector about to come under the read/write heads is the sector specified by the address register. #### Write Protection Switches The 16 write protect switches mounted on the selection unit panel guard portions of disc memory. If one of these switches is in the "up" position, that portion of memory associated with the switch cannot be altered by a write operation. An attempt to write on a guarded portion of memory sets the error flip-flop and disconnects the buffer. Write protect switches do not affect reading from any portion of memory. The panel switches, their logical names, and their associated protected memory areas are listed in Table 3-2. The write protect switches provide true or false logic levels which are used in logic gates to abort any attempt to write into memory locations corresponding to the switch. These switches are not "hard-wired" into the selection matrix; therefore, it is possible that a malfunctioning gate could allow "protected" data to be destroyed or converseley, to "protect" an unprotected area of memory. | | Logical | • | Affected | |--------|------------|----------|----------------------| | Switch | Name | Bands | Addresses | | 0.0 | g.,,,, | | | | 0-0 | SW01 | 00-07 | 00000-00777 | | 0-1 | SW02 | 10-17 | 01000-01777 | | 0-2 | SW03 | 20-27 | 02000-02777 | | 0-3 | SW04 | 30-37 | 03000-03777 | | 1-0 | SW05 | 40-47 | 04000-0 47 77 | | 1-1 | SW06 | 50-57 | 05000-05777 | | 1-2 | SW07 | 60-67 | 06000-06777 | | 1-3 | SW08 | 70-77 | 07000-07777 | | 2-0 | | | | | 2-1 | | | | | 2-2 | | | | | 2-3 | | · | | | | Not used o | n 9367C | | | 3-0 | noe asea o | 11 93070 | | | 3-1 | | | | | | | | | | 3-2 | | | | | 3-3 | • | | | Table 3-2 Write Protect Switches and Affected Adresses. ## DISC FILE COUPLER The 9367C Disc File Coupler is located in the Input/Output cabinet and is connected to the basic selection unit via a 20-foot cable. The Coupler Unit may control as many as four Selection units, each having as many as 256 Tracks. The coupler buffers and controls the data flow between the TMCC (orDACC) and the selection unit. Power for the coupler is provided by the Input/Output unit. The coupler contains registers and flip-flops for control and timing purposes as well as for data handling. The following paragraphs describe the data and control registers that compose the coupler unit. See Figure 3-7. ## Character Buffer Register (V01 - V12) The character buffer register comprises 12 flip-flops, V01 through V12. During write operations the V register is filled in parallel from the 12-bit extended SCR register of the computer I/O buffer. During read operations the V register is filled in parallel from the $\bf Z$ register in the Coupler Unit. ## Character Storage Register (201 - 212) The character storage register consists of 12 flip flops. During write operations the ${\bf Z}$ register is filled in parallel from the 12 bit ${\bf V}$ register. During read operations the ${\bf Z}$ register is filled in parallel from the ${\bf S}$ register. See Figure 3-7. # Character Assembler/Disassembler Register (S01-S12) The S register, made up of 12 flip-flops SO1 through S12, assembles each 12-bit character as it is read off the disc in a serial-parallel manner from the four read amplifiers. When the S register contains the complete 12-bit character, its outputs are gated to the Z register. At the same time this new character enters the Z register, the previous character in the Z register is loaded into the V register. During write operations the S register receives the 12-bit character from the Z register in parallel. The character is then disassembled four bits at a time and is gated into the four write amplifiers to be recorded on the disc. ## Track Parity Flip-Flops (P01-P04) Longtitudinal odd parity is recorded on each of the four tracks of each band such that for each sector recorded there is an odd number of data one bits on each track. The four flip-flops, PO1, PO2, PO3 and PO4, generate this parity bit when writing, and check for odd parity correspondence when reading. Address Register (A09-A23) The address reigster (A), consisting of 15 flip-flops, A09 through A23, is located in the coupler, and addresses the unit, the disc, the band, and the sector. The A register receives its address data from the computer C register during a POT instruction. A read or write operation cannot begin until and unless equality exists between the contents of the sector counter register (D) in the selection unit and the contents of the address register bits A18-A23. Whenever equality exists between the contents of the D register and the six least significant bits of the A register the read or write operation will begin, provided, of course, that one of these operations has been initiated by the program. ## Module-3 Counter (M01-M02) The module-3 counter consists of two flip-flops, MO1 and MO2. This counter is triggered by the gated clock pulse (CNT) and counts from 0 to 2. During read operations the 0-count signifies that one 12-bit character is being loaded into the character storage register (Z), and during write operations the Z-count signifies that one 12-bit character is being taken from the character storage register. As the modulo-3 counter reverts from a count of two to a count of zero, it provides a clock pulse to toggle the character counter register (K). #### Character Counter Register (K) The character counter consists of seven flip-flops, K01-K07, and counts the number of 12-bit characters in each sector being either read or recorded. Since each sector contains 128 12-bit characters (64 24-bit words), when the character counter is full (K = 177) one sector has been read or recorded. The count relationship between the M and K register is shown in Table 3-3. | <u>MO1</u> | <u>M02</u> | <u>K01</u> | <u>K02</u> | <u>K03</u> | <u>K04</u> | <u>K05</u> | <u>K06</u> | <u>K07</u> | |------------|------------|------------|------------|------------|------------|------------|------------|------------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Table 3-3, M and K Character Counter Relationships ## Phase Counter (F01-F02) The coupler operates in one of three phases under control of a phase counter comprising the two flip-flops, F01 and F02. Table 3-4 describes the three phases, and their uses, and provides the logical expression of each of the states or sequences. | <u>F01</u> | F02 | Phase | Condition | Logical
Expression | |------------|-----|-------|-----------|-----------------------| | 0 | 0 | 0 | Standby | 00F | | 0 | 1 | 1 | Write | O1F | | 1 | 0 | 2 | Read | 02F | Table 3-4, Phase Counter # Subphase Counter (U01-U03) Phase one and phase two contain substates or sequences under control of the subphase counter which consists of the three flip-flops, UO1, UO2, and UO3. The functions of this subphase counter will be discussed in greater detail under read and write operations. ## Flip Flop U04 Flip flop U04 is the termination of write, and initiation of read flip flop. The termination is accomplished by setting U04 at the clock time before the next to last Z to S transfer. The initiation is accomplished by setting U04 at the first 0-count after the preamble end is detected. ## Flip Flop U05 Flip flop U05 is the read enable flip flop. This signal is used in the selection unit to enable the input gates to the read amplifiers 3.6 to 4.8 microseconds after the last possible address change. ## Flip Flop U06 The DC flip flop U06 is set by an alert to POT EOM from the computer and reset by a POT command. This flip flop allows a POT to occur during the postamble of a read or write phase. #### Flip-Flops X01 and X02 Flip-flops X01 and X02 are used primarily for PIN and POT operations. These functions will be discussed in greater detail when these operations are described. ## Flip-Flop X03 Flip-flop X03 is used to designate that the I/O channel is either connected or disconnected to the disc file system. ## Flip Flop X04 Flip flop X04 is the rate error flip flop. If the condition exists that a transfer from R to V has not occurred when it should, an error condition exists, and the channel error indicator is set (Write operation). During a read operation, X04 may be set by failure of the previous contents of Z to be transferred when the next character must be transferred out of the S register. #### Flip Flop X05 Flip-flop X05, when true, allows the sector portion (A18-A23) of the address register to count each sector, but inhibits the generation of a carry into the band portion after the sector exceeds its count of modulo 64. ## Data Shift Flip Flops X06-X09 Flip Flops X06 through X09 are used to control the shift of data between the S, Z, and V registers in both the write and read phases. This control is necessary because of the asynchronous slip between the memory computer cycle and the character data rate of the Disc Memory System. This slip can be as great as two memory cycles. ### Flip-Flop E01 The error detection flip-flop, E01, is set true by the following error conditions: - a) the address register is full (A12 through A23 all
ONES), the coupler is not in the non-increment mode, and the read/write operation has not been terminated. - b) An attempt is made to write into a switch-protected area of the disc. - c) An attempt is made to POT data into the coupler while it is not in the standby phase (00F $\overline{\text{XO3}}$) or the read or write postamble. ## Unit Select Register (G01-G02) The unit select register is made up of two flip-flops, GO1 and GO2. These two flip-flops are used during PIN operations only and are controlled by bits 12 and 13 of the "Alert to PIN" EOM instruction. The configuration of GO1 and GO2 determine which of the four disc units the PIN instruction addresses. #### Timing and Data Flow The remaining paragraphs of this general theory of operations treats the coupler, the selection unit and the disc storage unit as an entity rather than each unit separately in order to present a continuity in the explanation of the read/write timing and data flow operations. ## GENERAL READ/WRITE TIMING In general the timing characteristics for both read and write operations are similar. A read or write operation must be initiated while the disc file unit is in phase zero standby state - that is, in phase zero with the buffer and coupler not connected. Figure 3-8 shows the general timing for either reading or writing the two sectors, 45 and 46. Note that the standby condition exists only while the buffer is disconnected (XO3) in phase zero. If the buffer is connected (XO3) in phase zero, the standby condition no longer exists. If, after the buffer has been connected, the sector addressed by the address register is not immediately available to the read/write heads, the coupler remains in phase zero until the sector portion of the address register (A18 through A23) and the contents of the sector counter (D01 through D06) do become equal to each other. This comparison is made immediately after the sector counter has been incremented by the Sector Pulse. Equality is determined by the sector compare gate SAC. When SAC is true, the address register and the sector counter register contents are equal, signifying that the next sector about to pass under the read/write heads is the addressed sector. The contents of the D register are counted up by one each time a sector pulse appears. The address register is counted up by one each time the coupler leaves a read or write phase, unless the address is 7777 which is the highest address of a particular unit. The coupler remains in either phase one for writing or in phase two for reading only long enough to write or read the preamble, the data, the parity bits and the postamble. The read and write operations treat the postamble portion in a slightly different manner which will be made clear when these operations are covered in the detailed theory of operations. During the leading and trailing gaps the coupler returns to phase zero (with the buffer still connected) until the next sector is located. Because the entire operation has not been completed and the buffer is still connected, this condition of phase zero is referred to as the continuation mode. After the final sector has been written or read, the coupler returns to phase zero until the next read/write operation is initiated. The buffer does not disconnect until after the coupler returns to phase zero following the final sector read/write operation. Figure 3-8 is a timing diagram showing both the phase zero standby and continuation modes. FIGURE 3-8 GENERAL R/W TIMING AND PHASE ZERO #### WRITE DATA FLOW During write operations the 24-bit word is taken from memory and placed into the buffer 24-bit word assembly register WAR. The 12 most significant bits of the 24-bit word are then shifted into the 12-bit single character register SCR of the buffer and then transferred in parallel on lines Rw1 through Rw12 to the character buffer register (V01 through V12) of the coupler. See Figure 3-9. If the character storage register (Z01 through Z222) iisempty, the character is transferred into it in parallel from the V register. The 12 bits in the Z register are next transferred in parallel to the S register (S01 through S12) for disassembly. The S register, which is mechanized in a 3x4 configuration, shifts left one place and the data from S01, S04, S07 and S10 (bits 0, 3, 6 and 9) are transferred in parallel through WD1-WD4 amplifiers and the cable drivers to the write driver circuits, and finally to the four heads selected by the X-Y matrix in the selection unit. At the next clock pulse the S register again shifts left one place and the data in SO1, SO4, SO7 and S10 (bits 1, 4, 7 and 10) are written in the same manner as described above. This serial-parallel shifting of the S register continues until the entire 12-bit character has been written. pulses are required to empty the S register of its 12-bit character. As bits 2, 5, 8 and 11 are clocked out of the S register the next 12-bit character (bits 12-23) of the original word is already waiting in the Z register to be transferred in parallel to the S register and the process described above is repeated until the complete sector has been written. The coupler has the ability to store two 12 bit characters while the S register is disassembling a character, provided that the I/O channel was able to access them from the computer memory. After the final character of each sector is recorded, one parity bit is written one each of the four tracks. Each track must contain an odd number of one bits, including the parity bit; therefore, one complete sector will contain an even number of one bits on all four tracks. FIGURE 3-9 WRITE FLOW DIAGRAM Page 38b ## READ FLOW During read operations the information is read four bits in parallel from the disc, is decoded, amplified, and transferred to the S register in a serial-parallel manner. Refer to Figure 3-10, Read Flow Diagram. As each four bits are transferred into the S register, the S register shifts left one place. After three clock pulses the S register is filled with one 12-bit character. At the next clock pulse, the 12-bit character in the S register is transferred to the Z register, and the next four binary digits are read from the disc and transferred to the S register via the input gates to S03, S06, S09 and S12. Also if the V register is empty, this same 12 bit character will pass through the Z in parallel into the V register. As each bit is read from each of the four tracks, parity flip-flops P01 through P04 keep track of parity. After the entire sector has been read these parity flip-flops compare their present states with the odd parity bit previously written on the corresponding tracks. If they do not compare, the error signal WES is sent to the I/O channel. The contents of the Z register are transferred to the buffer on lines $\overline{Zwl-Zwl2}$ FIGURE 3-10 READ FLOW DIAGRAM * DELETED ON LATER MODELS # DETAILED LOGIC DESCRIPTION The remaining portions of this section treat in greater detail the read and write operations of the Rapid Access Disc File Model 9367C. Logic equations and timing charts are used to implement the text to give a clear picture of each operation or status of the RAD system. For purposes of simplicity in expressing logic equations in the text, all flip-flop input logic terms use the following symbols: y and z for direct set and direct reset, s and r for dc true and false inputs, and t for toggle flip-flop inputs. A logic list with appropriate symbols and gate terminology will be found in Section V of this manual. A glossary of logic terms and input/output signals is also furnished in Section V. Frequent reference to this glossary will be of value in clarifying the RAD operations described in the following text. ## Power Failure Detection The basic power failure detection scheme is shown in Figure 3-11, Power Failure Detection Circuitry. The two SK60 Power Detectors are located in the 9367C coupler chassis. One SK60 detects ac power failure in the I/O buffer which supplies the dc power to the coupler; the other SK60 detects ac power failure in the selection unit. The SK60 Primary Power Detectors require an ac input of approximately 10 volts RMS, therefore, step-down transformers are required at their inputs. Under normal operating conditions the SK60 outputs are at ground level, the relays are energized, and the PWR term is high. If primary power fails, the filtered dc power supplies in the I/O buffer or in the basic selection unit will maintain usuable dc voltages for several milliseconds to satisfy normal operation for that length of time. If ac power fails, or drops below a level established by a threshold adjustment on the SK60, the output of the detector goes to +25 volts which deener-gizes the relay and drops the PWR term to ground level. FIGURE 3-11 POWER FAILURE DETECTION CIRCUITRY As PWR drops to zero volts the output drivers of the write amplifiers are inhibited from further writing, the coupler sequences to phase zero, the buffer disconnects, the address register is cleared to zeros, and flip-flops UO1, through UO3 and XO1 through XO4 are reset. zG01-G02 = PWR $zF01-F02 = \overline{DRA}$ zX01-X04 = PWR $zU01-U03 = \overline{DRA}$ $zA09-A23 = \overline{DRA}$ $\overline{DRA} = \overline{ACT} PWR$ zU04-U06 = PWR The STO term from the Start button on the computer control panel is effectively "anded" with the PWR term. When the Start button is depressed PWR is grounded and the same action occurs as described for power failure. ## Unit Selection Circuitry If there are two, three, or four disc storage units connected to a disc file system, some means must be provided for enabling the addressed unit and disabling the remaining units. Figure 3-12, Unit Select Gates for Read/Write Operations, shows the method of generating and distributing the unit select terms USL and USL. Note the precession of pins 40 through 43 within the cables P168 and P169. This permits the proper address signal to be taken from the same pin
(pin 43) of each selection unit without changing address selection gates since the gates are originated in the coupler and not in the selection units. This scheme allows any selection unit to be substituted for any other without rewiring address gate circuits. The selection gate USL is part of the input gating to the write flip flops and x selection circuits. If USL is not true, no data can be impressed into the write heads by the write drivers. During read operations the unit select term is inverted ($\overline{\text{USL}}$) and is used at the disable input of the AX14 cable drivers (RD1-RD4) in the selection unit. The $\overline{\text{USL}}$ term enables the cable drivers of the selected unit, and disables the cable drivers of the non-selected units. Bits A09 and A10 of the address register determine the address of the selected unit for reading and writing. FUR READ/WRITE OPERATIONS SELECT Lina 3-15 FIGURE ## Head Selection Circuitry Head selection within each of the selection units is similar for both reading and writing. The X-Y matrix in each selection unit is made up of 16 Y-Selector circuits and 16 X-Selector circuits. Because data must be read or written onto the four separate tracks of a band concurrently, one Y-Selector and four X-Selectors are gated in such a manner that four X-Y coordinates exist - one for each of the heads of the selected band. The 16 Y-Selectors are Y01 through Y16. Input gates to the Y-Selectors are controlled by the status of A11, A12, A13, A14, and A15 of the address register. The output of each Y-Selector is connected to the center tap windings of 16 read/write heads. There are actually 20 X-Selector circuits that are divided into two groups; sixteen X-Selectors in one group, and four in the other groups. One group is used only for writing, the other group for reading. In the group used for writing, are four sets of four identical circuits, so in effect there are only four X selectors. Thus the matrix is actually 4 x 16, thus selecting only one band out of 64. Each write X select circuit enables one Write Driver circuit. Four are always enabled at one true, one for each bit. The other X selector group is used only for reading and comprises only 4 selector circuits. Each of these X selectors enable four of the 16 read transformers. The address register terms that enable both the read and write X selectors are A16 and A17. See figure 3-13. Page 42c Logic for both X and Y selection is given below. Table 3-5 presents the X-Y coordinates by band address (bits A12 through A17) for both read and write. # Y-Selector Logic | | | | | _ | | | | |-------------|-----|---|------------------|-----|------------------|------------------|-----| | 77 | Y01 | = | A11 | A12 | A13 | $\overline{A14}$ | A15 | | 15 | Y02 | = | 11 | 11 | 11 | 11 | A15 | | t ý | Y03 | = | 11 | 11 | *1 | A14 | A15 | | Ų,• | Y04 | = | 11 | 11 | ** | A14 | A15 | | | Y05 | = | 11 | 11 | A13 | A14 | A15 | | , # | Y06 | = | 11 | 11 | 11 | A14 | A15 | | 35 | Y07 | = | 11 | " | 11 | A14 | A15 | | n 25 | Y08 | = | 11 | ** | 11 | A14 | A15 | | 20 | Y09 | = | !! | A12 | $\overline{A13}$ | A14 | A15 | | 211 | Y10 | = | 11 | 11 | 11 | <u>A14</u> | A15 | | 93 | Y11 | = | " | 11 | | A 14 | A15 | | 2.5 | Y12 | = | 11 | 11 | 11 | A 14 | A15 | | 2 Pt | Y13 | = | 11 | 11 | A13 | $\overline{A14}$ | A15 | | 22 | Y14 | = | 11 | " | 17 | A14 | A15 | | 31 | Y15 | = | 11 | " | 11 | A14 | A15 | | r, t | Y16 | = | $\overline{A11}$ | A12 | A13 | A14 | A15 | # X Selector Logic | Kead | | W | vrite | | | | | |---|-------|------------------|-----------|-----|-----|------------------|----------------| | $\overline{\text{DSI}} = \text{REN } \overline{\text{A16}}$ | A17 X | K01-08, | 41-48=PWR | WEN | USL | $\overline{A16}$ | A17 | | $\overline{DS2} = "A16$ | A17 X | K11-18, | 51-58= " | 11 | 11 | A16 | A17 | | $\overline{DS3} = " \overline{A16}$ | A17 X | ζ21 - 28, | 61-68= " | 11 | 11 | $\overline{A16}$ | A17 | | $\overline{DS4} = "A16$ | A17 X | (31 - 38, | 71-78= " | 11 | 11 | A16 | A17 | | Band | Write
Y | Write
X | Read
X
Selector | Read
X
Selector | |----------|------------|------------------|-----------------------|-----------------------| | Address | Selection | Selection | Outputs | Gate | | | | Delegation | outputs | Gate | | 00 | V01 | V01 V00 | DV01 DV00 | | | 01 | Y01 | X01-X08 | RX01-RX08 | DS1 | | | Y01 | X21-X28 | RX 21 - RX 28 | DS3 | | 02 | Y01 | X11-X18 | RX11-RX18 | DS 2 | | 03
04 | Y01 | X31-X38 | RX31-RX38 | DS4 | | | Y02 | X01-X08 | RX01-RX08 | DS1 | | 05 | Y02 | X21-X28 | RX21-RX28 | DS3 | | 06 | Y02 | X11-X18 | RX11-RX18 | DS 2 | | 07 | Y02 | X31-X38 | RX31-RX38 | DS4 | | 10 | Y03 | X01-X08 | RX01-RX08 | DS1 | | 11 | Y03 | X21-X28 | RX21-RX28 | DS3 | | 12 | Y03 | X11-X18 | RX11-RX18 | DS 2 | | 13 | Y03 | X31-X38 | RX31-RX38 | DS4 | | 14 | Y04 | X01-X08 | RX01-RX08 | DS1 | | 15 | Y04 | X21-X28 | RX 21 - RX 28 | DS3 | | 16 | Y04 | X11-X18 | RX11-RX18 | DS2 | | 17 | Y04 | X31-X38 | RX31-RX38 | DS4 | | 20 | Y05 | X01-X08 | RX01-RX08 | DS1 | | 21 | Y05 | X21 - X28 | RX21-RX28 | DS3 | | 22 | Y05 | X11-X18 | RX11-RX18 | DS 2 | | 23 | Y05 | X31 - X38 | RX31-RX38 | DS4 | | 24 | Y06 | X01-X08 | RX01-RX08 | DS1 | | 25 | Y06 | X21-X28 | RX21-RX28 | DS3 | | 26 | Y06 | X11-X18 | RX11-RX18 | DS2 | | 27 | Y06 | X31-X38 | RX31-RX38 | DS4 | | 30 | Y07 | X01-X08 | RX01-RX08 | DS1 | | 31 | Y07 | X21-X28 | RX21-RX28 | DS3 | | 32 | Y07 | X11-X18 | RX11-RX18 | DS2 | | 33 | Y07 | X31-X38 | RX31-RX38 | DS4 | | 34 | Y08 | X01-X08 | RX01-RX08 | DS1 | | 35 | Y08 | X21-X28 | RX21-RX28 | DS3 | | 36 | Y08 | X11-X18 | RX11-RX18 | DS2 | | 37 | Y08 | ×31-X38 | RX31-RX38 | DS4 | | 40 | Y09 | X41-X48 | RX01-RX08 | DS1 | | 41 | Y09 | X61-X68 | RX21-RX28 | DS3 | | 42 | Y09 | X51-X58 | RX11-RX18 | DS2 | | 43 | Y09 | X71-X78 | RX31-RX38 | DS4 | Table 3-5 X-Y Selection coordinates by band addresses. | | | | Read | Read | |------------|-----------|-----------|----------------------|----------| | | Write | Write | X | X | | Band | . У | X | Selector Programme 1 | Selector | | Address | Selection | Selection | Outputs | Gate | | 4 4 | Y10 | X41-X48 | RX01-RX08 | DS1 | | 45 | Y10 | X61-X68 | RX21-RX28 | DS3 | | 46 | Y10 | X51-X58 | RX11-RX18 | DS2 | | 47 | Y10 | X71-X78 | RX31-RX38 | DS4 | | 50 | Y11 | X41-X48 | RX01-RX08 | DS1 | | 51 | Y11 | X61-X68 | RX 21 - RX 28 | DS3 | | 5 2 | Y11 | X51-X58 | RX11-RX18 | DS2 | | 53 | Y11 | X71-X78 | RX31-RX38 | DS4 | | 54 | Y12 | X41-X48 | RX01-RX08 | DS1 | | 55 | Y12 | X61-X68 | RX21-RX28 | DS3 | | 56 | Y12 | X51-X58 | RX11-RX18 | DS2 | | 57 | Y12 | X71-X78 | RX31-RX38 | DS4 | | 60 | Y13 | X41-X48 | RX01-RX08 | DS1 | | 61 | Y13 | X61-X68 | RX21-RX28 | DS3 | | 62 | Y13 | X51-X58 * | RX11-RX18 | DS2 | | 63 | Y13 | X71-X76 | RX31-RX38 | DS4 | | 64 | Y14 | X41-X48 | RX01-RX08 | DS1 | | 65 | Y14 | X61-X68 | RX 21-RX 28 | DS3 | | 66 | Y14 | X51-X58 | RX11-RX18 | DS2 | | 67 | Y14 | X71-X78 | RX31-RX38 | DS4 | | 70 | Y15 | X41-X48 | RX01-RX08 | DS1 | | 71 | Y15 | X61-X68 | RX21-RX28 | DS3 | | 72 | Y15 | X51-X58 | RX11-RX18 | DS2 | | 73 | Y15. | X71-X78 | RX31-RX38 | DS4 | | 74 | Y16 | X41-X48 | RX01-RX08 | DS1 | | 75 | Y16 | X61-X68 | RX21-RX28 | DS3 | | 76 | Y16 | X51-X58 | RX11-RX18 | DS2 | | 77 | Y16 | X71-X78 | RX31-RX38 | DS4 | Table 3-5 (Continued) #### OPERATIONAL STATES The 9367C Disc File system operates in one of three separate phases or sequences which are controlled by flip-flops F01 and F02. These three phases are listed in Table 3-6. Phase Counter. | Flip-Flops | Phase | Logical
Name | Condition | |------------|------------|-----------------|-------------| | F01 F02 | | | | | 0 0 | Phase Zero | 00F | Standby/GAP | | 0 1 | Phase One | 01F | Write | | 1 0 | Phase Two | 02F | Read | Table 3-6, Phase Counter ## Phase Zero If the buffer connect flip-flop, X03, is false in phase zero $(00F \ \overline{\text{X03}})$, the coupler is in a standby or ready state. A read/write operation should be initiated only when the coupler is in this standby condition. When the coupler is in phase zero with the connect flip-flop X03 true $(00F \ \text{X03})$, either a read/write operation has been initiated, or one is in progress and has not been completed. ## Phase One All write operations occur while the coupler is in phase one. Phase one <u>begins</u> with the preamble and <u>ends</u> eleven clock pulses after the parity bit has been written. ## Phase Two All read operations occur while the coupler is in phase two. Phase two begins with the preamble and ends after the last character has been accepted by the channel. #### Clock When power is initially turned on the coupler assumes the condition representing phase 0. $$00F = \overline{F01} \overline{F02}$$ The clock pulses in phase 0 and phase 1 are derived from a write clock track consisting of 27,712 bits permanently recorded around the circumference of the recording surface. The nominal bit frequency in 800K bits/sec. at a 2% slip of the device motor. The wave form of this clock is a .5 usec. pulse inverted by the line driver and called $\overline{\text{CLK}}$ and $\overline{\text{occurs every 1.2 usec}}$. The clock for the read phase is derived from the data being read. The signal $\overline{RCN} = \overline{02F}$ is used in the selection Unit to select the write clock. ## INITIATING A READ/WRITE OPERATION The timing considerations in 00F (phase zero) to initiate either a read operation or a write operation are identical. The only difference is whether the coupler enters 01F (phase one) or 02F (phase two) when leaving 00F. This, in turn, depends on the status of W9 in the I/O buffer. If W9 is true, the coupler sequences from 00F to 01F for writing; if W9 is false, the coupler sequences from 00F to 02F for reading. wq = write wq = read To initiate either a read or write operation, the program
normally presents six instructions in the following order: a) EOM, I/O mode (Alert to POT) b) POT (Load coupler address register) c) EOM, ALC (Alert channel interlace) d) EOM, I/O mode (Establishes termination mode) e) POT (Load interlace word) f) EOM Buffer mode (Connect RAD to channel) The generalized timing diagram of Figure 3-17 will aid in clarifying the following logical explanation of these instructions and how they affect the disc file coupler and selection unit. ## Response to an EOM - Alert to POT An EOM to POT an address from the computer always sets UO6, a dc flip flop. where $$IDT = DMA \overline{C16} \overline{100}^{EOM}$$, where $Rad address in Cree, \rightarrow DMA = \overline{C17} \overline{C19} \overline{C20} \overline{C21} \overline{C22} \overline{C23}$ If the coupler is in \emptyset 0 or in any but the postamble of \emptyset 1 or \emptyset 2, X01 is set on the first PTQ (POT 1 from computer) that occurs due to the execution of the POT instruction, which must follow the EOM Alert to POT which initially caused U06 to set. The PTQ is derived from a delta gate on the cable plug module for the POT cable. PTQ = POT 1 Q2 = NUF = \$0 + NOT POSTAMBLE where **U01 U02 OOF** U01 U02 and = postamble of the read or write phase If the coupler is in the postamble of $\emptyset 1$ or $\emptyset 2$, X01 will not be set until the first PTQ to occur after the coupler enters phase 0 immediately after the post-The true level of the next PTQ in ØO also resets UO6. rU06 = X01 PTQ The flip flop, X02, is set at the same time as X01 provided that the POT was given at a legitimate time; that is, during \$\int_00\$ or in postamble time and the channel is not connected to the coupler. If the POT occurs while still in the postamble, XO2 will set as soon as the phase counter enters phase 0. yX02 = 00F X03 X01 tolle conclition The RTO is the response signal to the CPU telling it to leave $\emptyset 2$ of the POT command. This is generated by X01. The RTO is sent to the CPU any time that X01 is set. RTO = XO1 PT1 rXO1 = NUF PT1 The RTO is disabled at the driver whenever XO1 XO2 is true. Normally XO2 would be in the set state at this time, and the address register loading takes place after the clearing of the A register by ACT. z(A09-A23) = DRA - description + ugusting where DRA = ACT + PWR ACT = 00F XO3 U06 = DO . NOT CONNECTED . ALERT TO POT PWR = Power detection circuit indicated that the voltage is going off or that the Start button on the CPU console is depressed yA09 = C09 LDA address lines go to the yA23 = C23 LDA RAD "A" register where LDA = X01 X02 PTO P_{07} Alter PoT. If the POT was given at an illegitimate time, the A register will not be cleared due to the $\overline{00F}$ and the $\overline{X03}$ in the ACT equation. If either of these are missing it would signify that the coupler was in some state other than standby and disconnected. Also at this illegitimate time, no setting of a new address into the A register would occur because XO2 is false. flip flop would then be set upon issuance of the POT command if X01 was set and X02 reset. We see the property of pro Figure 3-14 shows the timing relationships of the signals used during an Alert to POT and POT sequence executed while the RAD coupler was in \emptyset 0 standby mode. Figure 3-15 shows the same signals occurring while the coupler is in a \emptyset 1 or \emptyset 2 postamble. Note that in this figure that the end of postamble (00F) occurs during PTQ resulting in a shorter ACT. If 00F occured slightly later X01 would have to wait until the following PTQ to set. Thus U06 would have to wait an additional machine cycle before it could reset thus keeping ACT up almost 1.75 us. longer. Flip flops X01 and X02 are both reset by the end of PT1. $rX01 = NUF \underline{PT1}$ $rX02 = \underline{PT1} + \dots$ Flip flop U01 indicates that the coupler has accepted a new address. yU01 = LDA sets as soon as it is localed Flip-flop X05 follows the output of C14 and determines the non-increment mode status. sX05 = C14 TNI X05 = NON INCREMENT Hode $rX05 = \overline{C14}$ TNI TNI = $\overline{X03}$ IDT (\overline{NUF} + 00F) The setting of X05 signifies that in the read or write operation that is to follow, the address register cannot alter its current band address as the sector portion (A18-A23) counts from 00 to 77. TNI is a term that specifies the time to set X05, which is during an alert to POT command if given at a proper time. FIGURE 3-14 POT ADDRESS TO A REGISTER WHEN IN STANDBY MODE Page 48b Table 3-7 shows the effects on U)6, X)1 X02, E01, LDA and ACT as a result of the POT command being executed during various conditions of the coupler. | | CONDITION | DOLE TERM | ∌ 5 001 032 | Ø0 + Ø0 U01 U02 | | |-----------|----------------|---------------------|-------------------------------|------------------------|--| | | | IDLE PERM | POSTAMELE | OTHER TIMES | | | 12. S | SET U06 | IMMEDIATE | IMMEDIATE | IMMEDIATE | | | By } | RESET U06 | 2nd PTQ | 2nd PTQ in 00 | 2nd PTQ | | | - D-) | SET X01 | lst <u>PTQ</u> | lst PTQ in 00 | 1st <u>PTQ</u> | | | Μ ζ | RESET X01 | PT1 | Wait for <u>PT1</u>
in Ø0 | PT1 | | | on lime > | SET XO2 | lst <u>PTQ</u> | lst <u>PTQ</u> in ØO | NEVER | | | ï | SET E01
ACT | MEVER
UO6 | NEVER Wait for 00 | 2nd PTQ ERROR
NEVER | | | (-> | LDA = VO/ | 2nd PTQ | 2nd PTQ in Ø0 | NEVER | | TABLE 3 - 7 POT CONDITIONS TEND adults and we can slort need/write Operation ## Initiation of a Read/Write Operation If a new address has been loaded into the A register (U01 = 1) and the POT action is complete (X01 = 0), the next sector pulse, SIP, triggers a 4.0 usec. one shot, BSC. SBSC = OOF SIP BSC = 4 love where $HSD = U01 \times \overline{X01} + \dots$ $SIP \rightarrow SID \rightarrow SEC \rightarrow SIM$ This sector pulse <u>SIP</u>, is derived from the pulses recorded on the sector track in the following manner. The pulses are read from the disc and amplified (<u>SID</u>) and decoded so as to distinguish the 63 sector pulses (<u>SEC</u>) from the one index pulse (<u>IDX</u>) per revolution of the disc. The sector and index pulses generate a term, <u>SIM</u> which is used to reset a flip flop <u>YSC</u>, during the sector/index pulse time. This flip flop generates the SIP pulse used in the coupler and also allows setting the band address flip flops in the selection unit at the sector pulse time. These band flip flops, All-Al5, contain the same band address bits that are in the coupler address register (A reg.) These are used so that the <u>head selection matrix</u> will not be changed during the Daţa time, even though a POT command may be issued at any time. See Figure 3-16. SIP = YSC SECTOR INCREMENT PULSE SYSC = SIM WCK SET IN THE BAND ADDRESS rYSC = SEC WCA where SIM = SEC+IDX SECTOR OR INDEX PULSE SWCK = SIM WCA NOT SIP AND CLOCKED TWCK = WCA + IDX CLOCK OR INDEX POLSE WCA is output of clock pulse read amplifier. FIGURE 3-16 SECTOR POLSE TIMING The D register in the selection unit is also incremented by the sector pulse SEC. $$tD06 = \underline{SEC}$$ $$tD05 = D06$$ $$tD01 = \underline{D02}$$ $zD01-D06 = \overline{IDX}$ The one shot <u>BSC defines</u> the time that a comparison between the D register and the sector portion of the A register is made. Therefore both of these registers must not change during the time that BSC is true. To insure this SIP is true for at least 1.2 usec. This is the time that the D register is incrementing. The A register is filled by the POT command or the AIN term and it will be stable for at least 1 usec. before BSC starts. This is insured by the fact that BSC cannot set until X01 is reset and X01 cannot be reset until the end of PT1. During the time that BSC is true the current sector address is compared with the sector address in the A register, and if they are equal the flip flop <u>UO2</u> is direct set by the sector compare gate. SAC. where $$SAC = CUH CLH$$ $$CUH = \overline{A18} \overline{CD1} + \overline{A18} \overline{CD1} + \overline{A19} \overline{CD2} + \overline{A19} \overline{CD2}$$ $$+ A20 \overline{CD3} + \overline{A20} \overline{CD3}$$ $$CLH = \overline{A21} \overline{CD4} + \overline{A21} \overline{CD4} + \overline{A22} \overline{CD5}$$ $$+ A23 \overline{CD6} + \overline{A23} \overline{CD6}$$ If the buffer has not been connected by this time, a signal is generated which may be used as an input to the priority interrupt chassis. This signal indicates that the search for desired sector has ended and that there is about 15 usec. before the preamble bits are available to be read or written. This gives the computer time to set up the interlace registers in the Input/Output channel and connect the RAD to the channel with a BUC type EOM. Figure 3-17 shows the most important timing relationships starting from the Alert to POT command to the preamble time. FIGURE 3-17 TIMING DIAGRAM PHASE ZERO 00,01,10,00,00 ## Operation of the Counters This counter is actually made up of two separate counters. One is a two stage modulo 3 counter, that steps through 3 distinct counts. The other is a normal seven bit binary counter with 128 different configurations. Every third state of the modulo 3 counter steps the character counter portion by one. The character counter is re-clocked at about the middle position, KO4. sMO2 = MO1 CNT Mo2CNT=CLK VOZ OOM = MOI MOJ (* 400 (400) rM02 = CNT Mo2 $sM01 = M02 CNT \overline{M01}$ 02M = MOI rMO1 = CNT MOI $sK07 = \overline{(01F\ U01\ K06)}\ M01\ K07$ rK07 = M01 ko 7 $sK06 = K07 \ \overline{K06}$ $rK06 = U01 \ 01F \ M01 + K07$ $sK05 = (\overline{01}F \ \overline{U0}1 \ \overline{K06}) \ \underline{K06}$ rK05 = K06tK04 = K05 K06 LSC CNTtK03 = K04tK02 = K03tK01 = K02LSC = M01 K07 (every 6th count) 24 Bi75 The term <u>CNT</u> is a gated clock pulse to the counters. It is only <u>enabled</u> during <u>leading gap</u>, <u>preamble</u>, data and <u>postamble</u> time. The counters are reset by the logic term <u>DRK</u>. The timing
relationships of these counter stages can be seen in Fig. 3-18. Two amplified outputs of the modulo 3 counter are provided. These are count 0 and count 2. Count 0 = 00M = $MO1 \overline{MO2}$ Count 1 = MO2Count 2 = 02M = MO1 The logic term NXL signifies the last two counts of the character counter portion. NXL = K01 K02 K03 K04 K05 K06 Page 98 equalipro ## Leading Gap Once the proper sector has been located it is then necessary to count the 13 clock pulses which define the leading gap. This is done with the M and K These counters are initially reset by DRK. $$zK02 - K07 = \overline{DRK}$$ dc reset $$zM01 - M02 = \overline{DRK}$$ where DRK = $$00F \overline{U02} + \dots$$ The KO1 flip flop is also reset by \overline{DRK} , but it is accomplished in a different way. DRK is tied to true output of KO1 (through a buffer amplifier) and when DRK goes to OV it resets the flip flop by pulling its true output down to ground. The counter will start to count the clock pulses (CNT) as soon as these are enabled by UO2. $$CNT = CLK U02 + \dots$$ At the third clock pulse to occur in the leading gap the dc flip flop UO5 is set. U05 is the Read Enable signal which is used in the Selection Unit to enable the input gates to the read amplifiers 3.6 to 4.8 usec. After the last possible address change. $$REN = OOF UO5$$ The counting of the leading gap proceeds for 13 clock counts to generate a 15.6 usec. delay period. This delay period is used to insure stabilization of the read amps and the head selection matrix and to allow time to program the required instructions before the data read/write time. If the BUC wasn't previously issued, it must be done during the leading gap When the coupler becomes connected to the I/O channel the XO3 flip flop is set and the error flip flop is reset. where DMA = $$\overline{\text{C17}}$$ C19 $\overline{\text{C20}}$ C21 C22 $\overline{\text{C23}}$ localities $rEO1 = 00F$ DMA BUC rE01 = OOF DMA BUC On the 13th count, UO2 is reset thus stopping the count and ending the leading gap. rU02 = 00F K05 CLK At this time the coupler enters the read or write phase if the buffer is ready (X03 set), and the channel has the RAD address in W10-W14. $\underline{W9}$ is used to control the phase counter as we leave \emptyset 0. where $$SF01 = ERW DMW W90 CLK$$ (Read) $$SF02 = ERW DMW W90 CLK$$ (Write) $$DMW = W10 W11 W12 W13 W14 \leftarrow RAD ADDRESS on Whites$$ $$ERW = 00F K05 X03$$ (13th count) If the operation is a write, the read enable flip flop, which was set on the 3rd clock of the leading gap, is reset as the coupler exits phase zero. If for some reason the channel is disconnected (DMW) from the RAD at any time except during the leading gap or preamble, the coupler connected flip flop is reset. $$rX03 = \overline{DMW} \overline{U01} \underline{CLK} + \dots$$ The flip flops U02, U03, U04 and U05 are initialized at the end of the leading gap, for their roles in the ensuing read or write phase. Figure 3-18 shows the timing relationships between the various signals used during the leading gap time. Phase one is defined by: $01F = \overline{F01} F02$ This phase begins at the 13th clock count (15.6 us) after SIP and lasts for a period of 406 clock pulses. (487 usec). However, if the band address selected is write protected, this phase lasts only one clock period during which the error flip flop, E01, is set and the connected flip flop, X03, is reset. $sE01 = 01F WLK CLK + \dots$ $rX03 = 01F WLK CLK + \dots$ $rF02 = 01F WLK CLK + \dots$ rU01 = 01F WLK CLK where WLK is a signal from the selection unit that the band addressed is also protected by the switches. ### Write Preamble A ten bit preamble, 0101010100, is written on each of the four tracks in parallel. The data bits are sent to the selection unit on four lines, WD1-4. It is mixed with the clock signals WCA and WCK, and sets the Write flip flops WDE1-4. It is then amplified and sent to the proper heads. See Figure 3-6. $$sWDE1 = \overline{WDE1} \ \underline{WCA} \ (WCK + \overline{WCK} \ WD1)$$ $rWDE1 = WDE1 \ WCA \ (WCK + \overline{WCK} \ \overline{WD1})$ means some WD1 = U01 U03 01F + ... it inhibits changing vo 3 at last 2 clocks for the littles will be the when we levere PNC, vo 3 is off so me got to a rest 2 to a logger to the levere PNC, vo 3 is off so me got to a rest 2 to a logger logg Figure 3-19 shows a more detailed data flow and clock generations. The flip flop UO3 as toggled with every other count thus generating the pattern used for the preamble. The first clock after entering phase one sets the flip flop UO2 which enables the counter (CNT). $sU02 = 01F U01 \overline{WLK} \underline{CLK}$ $CNT = U02 CLK + 01F \overline{U01} CLK$ At the end of the preamble UO1 is reset by the counter. ►U01 = 01F WPC CLK where WPC = U01 K06 M01 WPC is true during a count of 9 but since the counter didn't start counting until the second clock pulse in the preamble, because UO2 was reset, the preamble is 10 bits in length. Also at the end of the preamble the counter must be returned to zero so it can then be used to count the 128 characters of data to be written. This is accomplished by inhibiting the setting of KO7 and KO5 at the end of the preamble by JK57 being false. $$sK07 = M01 JK57$$ $sK05 = K06 JK57$ $JK57 = 01F K06 U01$ # Request of Data Characters At the first clock pulse after the preamble the first four data bits are written. Therefore during the preamble they were requested from the CPU and shifted through the appropriate registers in time to be transferred to the write flip flops. WD1 - $$4 = 01F 23U 801-4$$ where $23U = \overline{U01} U02$ (data time) SELECTION UNIT 9367 C Figure 3-20 is a timing diagram showing all the important signals used during the write preamble and write data time. The first data character is requested from the CPU by setting XO8 as phase one is entered. The Z and V registers are 12 bit buffer registers used to hold data for up to 2 memory cycles during the asynchronous slip between the memory computer cycle and the character data rate to the RAD. If the V register can accept a character from the channel as specified by XO8 being true, the ECW signal is generated. $$ECW = 01F \times 08 \times 000 \times 000 \times 03$$ W50 (W5) and W60 (W6) are included to permit transfer of data at near maximum rate. (286K char/sec). X03 stops data requests if a partial sector is called for in the interlace count register and the interlace count goes to zero, thus disconnecting both the channel and the disc. $$rX03 = \overline{U01} \ \overline{DMW} \ \underline{CLK} + \dots$$ At the leading edge of the first clock after W60 is set in response to the ECW, the R lines ready flip flop, X06 is set and the V empty flip flop, X08, is reset at the falling edge of the same clock, becuase the data was transferred into V at that time. X06 is reset on the leading edge of the next sx06 = 01F W56 CLK clock. rX08 = 01F X06 CLK $rX06 = 01F \overline{CLK}$ W56 = W6 W5 DRV = W56 XOG To allow the data transfer by only the true R lines from the I/O channel, the $\mathbb V$ register is cleared before loading $$zV1-12 = \overline{DRV}$$ $DRV = W56 \overline{X06} \overline{CLK} F02$ where $W56 = \overline{W5} W6$ then sV01= LDV RO1 sV12= LDV R12 Where LDV = 01F X03 X06 W 0 STV CLK and STV is a 250ns strobe pulse initiated CLK On the next clock leading edge after XO8 is reset, that XO9 is also true (indicating that Z register is clear), XO7 is set and the contents of V are transferred to Z; and also on the leading edge of the same clock pulse, XO8 is set again indicating that V is now clear and ready to receive another character from the I/O channel. LDZ is the logic term that enables the data transfer from V to Z. $$sX07 = 01F X09 \overline{X08} \overline{CLK}$$ $sX08 = 01F \overline{U04} X09 \overline{CLK}$ Again to transfer the data using only the true lines the Z register must first be cleared. $$zZ1-12 = \overline{DRZ}$$ where DRZ= 01F X08 X09 CLK the data then is set into the Z register sZ12 = V12 LDZ Where LDZ = 01F X07 CLK On the next clock leading edge XO7 is reset $$rX07 = \overline{CLK}$$ Since the Z register now contains data the Z empty flip flop X09 is now reset. (It was initially set at the beginning of the preamble). $$yX09 = \overline{U02} U01$$ $$rX09 = 01F X07 U01 CLK$$ Although during other than the preamble time $(\overline{U01})$ the Z may transfer its data to the S register at the same time at V to Z transfer takes place. In this case X09 would not reset. This is the reason for the different gating during data write time. $$rX09 = 01F X07 \overline{M01} CLK$$ This double transfer can only occur at the clock which occurs when the counter is in its O2M configuration. The Z to S transfer always occurs at this time. s $$SO1 = LDS ZO1 CLK$$ r S01 = LDS Z01 CLK Similarly for SO4, SO7 and S10 $$yS02 = LDS 202$$ Similarly for S03, S05, S06, S08, S09, S11 and S12 where LDS = 01F 02M CLK During most of the preamble X09 is reset because the first 12 bit character of data is held in the Z register. At the last clock of the preamble this character is transferred to the S register and then X09 is set. where WPC= U01 K06 M01 (end of preamble) During the data transfer time, X09 also sets each time a character is transferred; into the S register. $$sX09 = 01F M01 \overline{U01} CLK$$ If the condition exists that a transfer from R to V has not occurred, as shown by X08 being true, at the time that a transfer from V to Z to S occurs (02M X05), a rate error condition exists and the channel error indicator is set. The parity flip flops P01 through P04 are set during the preamble in preparation for the longitudinal parity generation. $$y P01 - 4 = SPR$$ where SPR + 01F 001 #### WRITE DATA Each clock time except 02M clock, the S register data is shifted one position in order to write the succeeding 4 bits on the disc. sS01 = **\$**02 SH**\$** CLK similarly for SO4, SO7, and S10 sSO2 = SO3, SH. similarly for S03, S05, S06, S08, S09, S11 and S12 where SHS = 01F
02M CLK Since LR1-4 are false in the write phase, zeroes are shifted in S02,3,5,0,8,9, 11, and 12 during the shifting process and so these can be bettly the direct sut input when transferring an new character into S. 384 bits of data are written on each of the four tracks during phase one. WD1 = SO1 23U WD2 = S04 23U WD3 = S07 23U WD 4 = S10 23U where $23U = \overline{U01} \ U02$ (data time) The termination is accomplished **by** setting UO4 at the clock time prior to the next to last Z to S transfer and inhibiting further setting of XO8 sU04 = 01F NNL K07 02M CLK where NNL = K01 K02 K03 K04 K05 # LONGITUDINAL PARITY GENERATION At the end of the write preamble time the four parity flip flops are all set to their true state. These flip flops, POI-PO4 are used for generating the longitudinal parity bits written at the end of the data time, and they are also used for checking parity on a read operation. y P01 - P04 = SPR where $SPR = 01F U01 + \dots$ During phase one data time each of these P flip flops is toggled with the data bits being written on that particular track. P01 corresponds to track one etc. t PO1 = 01F WD1 CLK t PO2 = O1F WD2 CLK t P03 = 01F WD3 CLK t P04 = 01F WD4 CLK When the writing of the data is completed, U02 is reset. r UO2 = O1F NXL LSC CLK where LSC = M01 K07 (every 6th count) NXL = K01 K02 K03 K04 K05 K06 (last word time of sector) ### WRITE PARITY AND POSTAMBLE Albanitidinal parity bit and 11 additional zeros comprisentael 22 bit peritrack postamble. The additional 11 zeros written are used to insure proper read back for the final data and parity bits when in phase two. It is not desirable to shut off the read amplifiers immediately with the final bit. The parity bits are written by gating the contents of the P flip flops into the write circuits. As the parity is written WD1-4 signals again toggle the parity flip flops as previously described, thus resetting any that were on. The WD gates above then will be all false thus writing zeroes in each track until the coupler goes to phase zero after the counter has counted 11 of these postamble zero bits. See figure 3-21. Now the address register is checked for an overflow condition. If the A register contains all ones in bits 12 through 23, UO3 is set, and an error is indicated in phase zero if the buffer is not disconnected by SIP time. s $$003 = 01$$ F 002 LSC AFL CLK where AFL = A12 A13 A14A23 If the A register is not full (band 77 sector 77) at the beginning of the postable it will then be incremented by one at the time that the eleventh portamble zero is sent AIN = 01F $\overline{\text{U01}}$ $\overline{\text{U02}}$ LSC K06 AFL CLK :A23 = A1N to the write circuits. tA23 = A1 tA22 = A23 $tA18 = \underline{A19}$ tA17 = AFC AIN tA16 **=** A17 tA15 = A16 $tA14 = \underline{A15}$ tA13 = AFB AFC AIN tA12 = A13 tA'09 = A'10 where AFB = A14 A15 A16 A17 AFC = A18 A19 A20 A21 A22 A23 X05 This concludes the write phase and the coupler returns to phase zero at the end of the postamble. $$rF02 = 01F \overline{U02} LSC K06 CLK$$ When writing is is necessary to disable the ${\mathbb Z}$ lines to the ${\mathbb I}/0$ channel. is done by disabling the cable drivers with FOI. The enable term is a 0 volttrue logic. The Z lines therefore are only active during the read phase $(\emptyset 2)$. Another term X12 is generated in the coupler and sent to the I/O Channel. This signifies to the channel that the RAD is using the 12 bit extended single character register. X12 = DMW # SECTOR GAP FOLLOWING A READ/WRITE OPERATION At the end of each sector read or write, the coupler returns to phase zero in both single and multisector operation, and if appropriate, re-enters the read or write phase by the same procedure as previously described in the initiate Read or Write operation. The only difference is that the triggering of BSC will be gated by ASD of a different origin. If the previous sector written was not aborted by an attempt to write in a protected disc area, or an attempt was made to increment the A register across a unit boundary, ASD will be true. $ASD = XOS \overline{AOS} + ASD \overline{AOS}$ At the following SIP, BSC is triggerred in the same manner as in the initial gap. The conclusion of data transfer is senseded by the disconnection of the device by the channel at the end of the interlace count. $$r X03 = \overline{DMW} \overline{U01} CLK$$ With X03 reset and the coupler in phase zero or postamble time, the coupler is ready and can receive another EOM, Alert to POT. The following chart shows the incidence of various timing signals occurring at the end of a write operation. The II interrupt occurs at the time the last word is transferred from memory to the channel buffer register, due to the fact that the interlace count reached zero. Il will not occur if the channel disconnects the device prior to the interlace count equal to zero, due to a Whs signal sent to the channel by the coupler. The following conditions cause the end if record signal Whs, to be sent to the I/O channel. - An attempt was made to increment accross a unit address boundary - An attempt was made to write in a write protected area At point A on the chart, 13 u sec. after II, the last data bit is recorded on the recording medium and the coupler becomes ready. From point A to point B, the parity bit and eleven postamble bits (zeroes) are recorded. At B the coupler enters phase zero, and responds to any POT that is pending. A POT must occur within 15 usec. if it is to find sector equivalence with the value that the D register will attain when it is incremented at **SIP** time in this particular gap. This is point 0 on the chart. 2 u sec. later, at point D, the sector pulse **SIP** trailing edge occurs and the coupler tests for equality between the A register sector and the sector counter of the addressed selection unit. At point E, 15.6 u sec. later, the coupler enters the read or write phase. If the EOM (BUC) instruction is the last of the RAD instructions to be programmed in the gap, it must be executed by E time or an entire device revolution will be lost. (ERW will not occur because XO3 is false) ## BAND NON-INCREMENT MODE This mode of operation is indicated by KO5 being set. In this mode, address incrementation is limited to the sector portion only. Thus a full band transfer can be programmed with minimum instructions in the gap at sector **6**, if the transfer starts at an arbitrary **sector**. In this mode, triggering of BSC is gated by HSD of a different source. $$HSD = \overline{U01} \times 05 \overline{E01}$$ That is, the qualification that an EOM POT sequence must occur before an operation can occur, is waived for the non-increment mode. ### ERROR PROCESSING The following errors cause a coupler error by setting flip flop E01. A. Write Error: When an attempt is made to write on a writeprotected band, a write error results. The coupler enters the write phase for one clock period during which E01 is set, X03 is reset, and the coupler returns to phase zero. B. Address overflow error: At the end of any sector read or write, if the address bits A12-A23 are all ones, the address incrementation (AIN) is inhibited. The coupler returns to phase zero with U03 set if the coupler is not in the band non-increment mode. If U03 is set an address overflow results if a new address has not been potted by the time the next SIP appears. s E01 = 00F U03 SIP (read) $r U03 = RF1 \overline{AFL} CLK$ where RFI = Last character read s U03 = 01F U02 LSC AFL CLK (write) and AFL = A12 A13 A23 $\overline{X05}$ ### C. POT error: A POT issued at other than idle or postamble will also indicate an error, regardless of whether a read or write operation is taking place. Even under these conditions the address POT is responded to by sending an RTO signal to the computer, but the contents of the A register are not changed. $yE01 = X01 \overline{X02} \underline{PT2}$ In the first two error types, the operation is terminated before the interlace count is zero. Therefore II will not occur but I2 will, because Whs is sent to the channel based on X03 being false or U03 being true at SIP time. WHS = 00F ($\overline{X03}$ \overline{BUC} + U03 SIP) DMW Flip Flop U03 will be reset when the buffer is disconnected. $r U03 = 00F \overline{X03} CLK$ The following error cause a channel error to be indicated by sending the WES signal to the I/O channel. A. Read Error: unll keep reading until wc=0 When reading the longitudinal parity bitstthe parity mismatch signal PCP will cause WES to be true. WES= 02F U01 U02 00M K06 K07 PCP CLK #### B. Rate Error: If during the transfer of the data in a read or write operation, characters are missed due to infering time shares or the data rate, the error signal was will be sent immediately and a Whs will be sent at the end of the sector. WES = X04 where 3X04= 02F PST X09 U01 OOM DMW CLK + 01F X08 X09 02M U01 CLK Whs =00F DMW BUC X03 and r X03=00F X04 CLK In the case of the read error, the operation is allowed to continue until the interlace counts is zero, Thus II is always generated. In the case of the rate error 12 is always generated at the next gap after the error occurred. The flip flop X03 is reset by detecting that W10 through W14 no longer contain the RAD address, 26. ### PHASE TWO-READ Phase two is defined by $$02F = F01 \overline{F02}$$ The read phase begins at the 13th clock count (15.6 us) after SIP and lasts until the last character is accepted from the coupler. The clock used in this phase is derived from the data by the read decoder module. The four clocks (one from each track) are "ored" together at the input to the one shot RCK which generates clock pulses of .5 usec width. The switching from the write clock, used in phase 0, to the read clock in phase two, is done in each Selection unit under control of RCN, which is generated in the coupler. $$RCN = 02F$$ The count registers KO2 through KO7, and MO1 and MO2 are reset by DRK at two places during the preamble.
One is at the beginning of the read phase, until the first clock is detected and the other occurs after six clocks are counted, until the first double zero is detected. $$DRK = 225 U01 U02$$ The clock pulses are counted in the count register by the CNT pulses. $$CNT = U02 CLK + 02F \overline{U01} CLK$$ Once the read phase is entered, a complete sector will be read and the longitudinal parity will be checked even though the buffer may disconnect earlier after reading only a part of the sector. The read phase will be described in three parts in the order of their occurrence. The detection of the preamble, reading of data and transfer of characters, and checking of longitudinal parity. ### DETECTION OF PREAMBLE The first clock detected after entering the read phase sets UO2. where U01 was set in 0 0 by the LDA OOM = M01 M02 Six clock times later, U02 is reset and U03 is set and the search for the preamble double zero begins. rU02 = 02F U01 02M K07 CLK sU03 = 02F U01 U02 02M K07 CLK Flip flop UO2 is set again when the first zero read is in SO3 and the second to check for 2 zeros, we check only I track zero is in RD1. On the basis that U03 is set (search for end of preamble) and U02 is set (found end of preamble), U01 and U03 are reset on the next clock. sU02 = 02F U01 U03 803 RD1 CLK -> 2 Zeros are found rU01 = 02F U02 U03 CLK rU03 = 02F U01 U02 OOM CLK The parity flip flop P01 through P04 are set prior to reading data so that the longitudinal parity may be checked at the end of the data read time. yP01 = SPR yP04 = SPR where SPR = 02F U01 $\overline{\text{U02}}$ Figure 3-22 shows the timing relationships used in reading the preamble and data, and also how the character is transferred to the Input/Output Channel. Each track will read 384 bits of data which will set into the S register and be shifted twice. Then it will then contain one 12 bit character. sSO3 = LR1 CLK $rS03 = \overline{LR1} CLK$ sS06 = LR2 CLK $rS06 = \overline{LR2} CLK$ sSO9 = LR3 CLK $rS09 = \overline{LR3} CLK$ sS12 = LR4 CLK $rS12 = \overline{LR4} CLK$ Where LR1-4 is the output of the read circuits gated by 02F. P01 through P04 are toggled whenever a one is read in from the corresponding track. tP01 = LR1 U02 CLK tP02 = LR2 U02 CLK tP03 = LR3 U02 CLK tP04 = LR4 U02 CLK Two 12 bit buffer registers are supplied to provide the buffering required to operate with the 92 computer as well as with the 930,940 and 9300 computers. These two buffer registers also allow sufficient time for lower priority times share operations to occur when using a TMCC. These two registers are called the Z and V registers. At each 00M clock, a 12bit character is transferred from the S register to the Z register. DC flip flops are used in the Z register and the information is thus transferred at the **beginning** of the clock pulse, CLK. $$sZ01 = LRC S01$$ $$rZ01 = LRC \overline{S01}$$ $$\vdots \qquad \vdots$$ $$sZ12 = LRC S12$$ $$r Z12 = LRC \overline{S12}$$ where LRC is the term which allows this transfer LRC = 02F OOM CLK The X09 flip flop is used to record the fact that the Z register is full by being reset every OOM time during the data transfer portion of a sector. $$rX09 = OOM \overline{U01} O2F \underline{CLK}$$ The transfer of data from the Z register to the V register occurs under control of the XO7 flip flop in every case except when the response to the ECW (signified by flip flop X06) is so late that X08 flip flop must be used on the other clock phase as described later intthis section. $$sV01 = LVR Z01$$ $$rV01 = LVR Z01$$ $$\vdots \qquad \vdots$$ $$sV12 = LVR Z12$$ $$rV12 = LVR Z12$$ Where LVR enables this transfer Except at the beginning the sequence of events is initiated by the first clock, CLK, to occur during W5 W6 time, which indicates that the previous information on the Zw lines (from to V-register to the I/O channel) has been accepted by the I/O channel. Thus X06 is set to indicate this condition. $$sX06 = 02F \overline{W5} W6 U04 \overline{CLK}$$ On the next clock leading edge the XO7 flip flop is set if the data presently in the V register had not arrived directly from S (as indicated by X09 being reset) or if it had, it would be at some clock time other than 02M. $$sX07 = 02F X06 \overline{X09} \overline{CLK}$$ (2 to V) $sX07 = 02F X06 \overline{M01} \overline{CLK}$ (S to Z to V) If the clock time is 02M and X09 is set, V should not be loaded, for the same character would be transferred twice to the I/O channel. The character is then allowed to be sent to the V register only while X07 is true. On the following clock leading edge X07 is reset. $$rX07 = \overline{CLK}$$ true says $V \in mpty$ The same terms which set X07 also reset X06 if not in the preamble and if the termination flip Flop U03 has not been set. rX06 = 02F $$\overline{\text{U03}}$$ $\overline{\text{U01}}$ $\overline{\text{CLK}}$ $\overline{\text{(M01 + X09)}}$ The ECW clocks to the channel are based on X06, which indicates that the previous character has been accepted by the I/O channel.t. The I/O channel wo and wo are included in the ECW logic to allow data transfer rates close to the maximum of 286K bytes/sec. ECW = 02F U04 W5 W6 DMW (X06 + U03 X09) U04 is included for initialization as described later. If an interfering time share operation occurs at a time that the I/O channel wants to access memory, the process will be delayed and W5 will stay on for an extra memory cycle ($\overline{\text{W6}}$ W5 $\overline{\text{W4}}$) and the channel cannot accept another character. In this case, X07 will not become true at 00M clock time and the character transferred from S to Z will not be transferred to V until a later clock. In the case of a second interfering time share, the transfer to V must take place later than the second clock past 00M, but before 00M CLK, in order to prevent the transfer of the next objectance into Z. This case, which is defined by X08 being true, is clocked differently. # LVR = 02F X08 OOM CLK If the XO7 is not set on the leading edge of the clock in O2M, XO8 is used to transfer the data, if it becomes available before the fall of CLK in O2M. This only occurs with interfering time shares by another device on another I/O channel operation simultaneously. It is reset at the following clock leading edge. A rate error is declared if the data is not transferred out of the ${\tt Z}$ register, as indicated by X09 still being reset by 00M CLK time. $$sX04 = 02F X09 U01 OOM CLK$$ DMW PST Wes = X04 Flip flop X09 will be set when Z is transferred to $\frac{1}{4}$ as determined by X07 or X08 sX09 = 02F X07 $\overline{\text{CLK}}$ + 02F X08 $\overline{\text{CLK}}$ To initialize this sequence it is necessary to delay the sending of ECW clocks to the I/O channel until the leading edge of the second OOM in the read data portion of Ø2 when the first 12 bit character has been read. This accomplished by having U04 in the ECW logic and not setting U04 until the proper time. $$sU04 = U01 OOM 02F$$ This initial setting of X06 should occur at the leading edge of: CLK in the first 02M so that the first S to Z to V transfer occurs on the second 00M CLK to occur in the read data portion of \$02. $$sX06 = 02F 02M \overline{U01} \overline{U04} \overline{CLK}$$ Termination of the ECW pulses for a sector must occur on the 128th ECW. Flip flop UO3 is set to indicate that X06 should not be reset after its setting for the 128th time. $$sU03 = 02F \overline{U01} \overline{U02} X07 \overline{X08} \underline{CLK}$$ The condition of $\overline{U01}$ $\overline{U02}$ indicates the clock at which S is transferred to Z (LAST) for the 128th time. where LSC = K07 M01 (every sixth count) and NXL = K01 K02 K03 K04 K05 K06 In the case in which the next to last character is transferred to V in the first part of the same OOM that the last character is transferred from S to Z, there will be two ECW's required to transfer out all of the data. By including X07 X08 in the set UO3 equation, UO3 does not get set until the last character is transferred to the V register. #### LONGITUDINAL PARITY CHECK The longitudinal parity bit which immediately follows the last data bit of the sector is compared against that which has been formed in the P flip flops while reading the Data. If they fail to compare, the error signal, WES, is generated. WES = 02F U01 U02 OOM K06 K07 PCP CLK The time that the parity bits presently is defined by U01 U02 OOM K06 K07. PCP is the gate in which the comparison is done. the data line Phonoit Hotel for the parity of the phonoit Hotel for the later than the phonoit Hotel for Hote true $$+ \overline{PCP} = \overline{PO1} \overline{LR1} + \overline{PO1} \overline{RD1}$$ $+ \overline{PO2} \overline{LR2} + \overline{PO2} \overline{RD2}$ $+ \overline{PO3} \overline{LR3} + \overline{PO3} \overline{RD3}$ $+ \overline{PO4} \overline{LR4} + \overline{PO4} \overline{RD4}$ When the last character is accepted, if an address overflow condition does not exist (not band 77 sector 77), the address increment signal AIN is generated, which adds one to the address in the A register. It's generated if in the non-increment mode due to the X05 term in the AFL. we do not spend as much time in the Postamble in Read as we do in write AIN = RF1 AFL CLK The read phase ends when the last character is accepted by the I/O channel, and the coupler returns to phase 0. rF01 = RF1 CLK where RF1 = $02F \overline{U01} \overline{U02} 02M K06$ $AFL = A12 A13 \dots A23 X05$ The flip flop UO3 is reset unless AFL is true in the non-increment mode. rUO3 = RF1 AFL CLK If UO3 fails to reset, it will then be on at the time that the next SIP pulse occurs, thus indicating an address overflow error by setting EO1. sE01 = 00F U03 SIP Flip flop U05, the read enable signal, is reset at the time the last character is accepted by the channel, in order to prevent any transitions into the read circuits at the time that the A register increments. rU05 =RF1 Flip flop UO4, which signifies the time for read ECW's, is also reset by RF1 1 - solent
to pun 0 - pot at Bod Time 1 - relent to PET If a rate error has occured in phase one or two the flip flop X04 is in the set condition. To prevent any further reading or writing beyond that sector in which the error occurred, the connected flip flop X03 is reset in the next 00 and the operation terminates. rX03 = 00F X04 CLK X04 is also reset at the same time rX04 = 00F CLK ### PIN OPERATIONS A PIN instruction transfers the contents of the D register (current sector address) to the specified core memory location. The contents of D01-D06 are transferred to memory word bits 18 through 23 respectively by the computer C register C18-C23 See Figure 3-23, Sector Counter PIN Flow. The PIN instruction does not affect the current **status** of the addressed selection unit or the coupler, and may be executed during any phase or operation of these units. ALERT TO PIN An EOM, Alert to PIN instruction must preced the PIN Operation. This EOM alerts the coupler that a PIN is to follow by setting flip-flop X02 true. sX02 = IDN IDN = C16 IOC DMA $RTO = \overline{X01} X02 \overline{ENP}$ RTO = RT X02:will remain true until Rti from the computer signals that the PIN instruction has terminated. $rX02 = RTI + \dots$ The Alert to PIN EOM instruction also selcts the addressed selection unit by setting the address code into the unit address regiser, GO1-GO2. sG01 = IDN C12 rG01 = IDN C12 sG02 = IDN C13rG02 = IDN C13 The outputs of G01 and G02 are gated to be used as cable drive inhibit terms in each of the selction units. | $GS1 = \overline{GO1}$ | GO2 | ${\tt Selection}$ | Unit | 1 | |------------------------|-------------|-------------------|------|---| | $GS2 = \overline{GO1}$ | G 02 | Selection | Unit | 2 | | GS3 = GO1 | G02 | Selection | Unit | 3 | | GS4 = GO1 | G02 | Selection | Unit | 4 | In each selection unit the GS address term unique to the unit becomes the term PSL. See Figure 3-24, Unit Select for PIN Operations. The PSL term is precessed on the cable connector modules in the same way as they are for unit selection during read and write selection. See Figure 3-12, Unit Select for Read/Write Operations. If the contents of the D register happened to **be** transferred into the buffer at the instant the register is counting up, an erroneous sector address could be obtained. To prevent this possiblity, the RTO signal will be delayed by the YSC flip flop to allow the D register to settle. The term YSC comes from the false output of the sector increment flip flop which is triggered by the **sector** pulse SEC. Normally the false output of YSC is **low**. When the sector pulse SEC appears, **YSC** goes to Ov for 1.2 microseconds which causes the signal ENP to delay RTO. RTO = $$\overline{X01}$$ X02 \overline{ENP} \overline{ENP} = YSC + \overline{PSL} \overline{PSL} = GS1 + GS2 + GS3 + GS4 If the Sector increment pulse is not present during a PIN operation, the YSC flip flop will be in its normally true state and $\overline{\text{RTO}}$ will not be delayed. The current secotr address in the D register is transferred to the C register on lines Cd18-Cd23. FIGURE 3-23 SECTOR COUNTER (D REGISTER) PIN FLOW DIAGRAM FIGURE 3-24 UNIT SELECTION FOR PIN OPERATION FIGURE 3-25 TIMING DIAGRAM, NORMAL PIN OPERATION FIGURE 3-26 TIMING DIAGRAM, PIN OPERATION DURING SECTOR INCREMENT. Normal PIN Operation timing is shown in the timing diagram of Figure 3-25. Figure 3-26 timing diagram shows the timing when a PIN operation occurs as the D register is incrementing. ### SKS INSTRUCTIONS The SKS instructions do not affect the current operation of the coupler in any way; thus, and SKS instruction may be executed while the disc file is reading, writing, or while it is in the standby condition. Each of the SKS instructions tests the status of the $\overline{$10}$ line for a true or false condition. The logic levels of the $\overline{$10}$ term are inverted. If $\overline{$10}$ is at ground level, the computer skips the next sequential instruction; if the $\overline{$10}$ signal is at a positive level, the computer executes the next sequential instruction. When SIO is not being tested it is positive. It can go to ground level only when it is being sensed and the condition being tested exists. The conditions tested and the corresponding control terms are: Skip if Disc Ready 00F $\overline{\text{X03}}$ + $\overline{\text{00F}}$ $\overline{\text{U01}}$ $\overline{\text{U02}}$ $\overline{\text{X03}}$ Skip if No Disc Error $\overline{\text{E01}}$ Skip if Track Not Protected $\overline{\text{WLK}}$ ### SKS Operations ``` SIO = DNA C13 C14 PUF X03 PWR + DMA C13 C14 E01 + DMA C13 C14 WLK where PUF = OOF + \overline{OOF} U01 U02 and WLK = (Band Protected by switch).USL USL = US1 = \overline{AO9} \overline{A10} Selection Unit 1 + IS2 = \overline{AO9} \overline{A10} Selection Unit 2 + U53 = \overline{AO9} A10 Selection Unit 3 + US4 = \overline{AO9} A10 Selection Unit 4 ``` SECTION IV INSTALLATION AND MAINTENANCE ### SECTION IV INSTALLATION AND MAINTENANCE The 9367 RAD is provided with a comprehensive diagnostic program (594003) that provides an extremely useful and versatile tool for testing and trouble-shooting the RAD system. However, to effectively use this tool, it is first necessary to determine that the RAD can perform the basic functions outlined below: - 1. Respond properly to computer tests. - 2. Accept an address correctly. - 3. Communicate with a TMCC or DACC. This section is intended to provide guidance in testing these functions. It should be remembered that total testing of the RAD requires the use of the RAD apocalyptic Diagnostic and that the procedures herein will test only basic operation. The following instructions control the 9367 RAD operation and are configured for operation through the E channel of the DACC. Operation through channels other than E require instruction modification for channel selection. # SKS 50026 Skip if RAD ready This SKS instruction shall cause the program to skip if the RAD error Flip-Flop is not set. The RAD Error Flip-Flop is set by the following conditions: - 1. An attempt is made to POT new address and the controller is not ready. - 2. An attempt is made to write in a write protected area. - 3. The address register increments across a unit boundary. ### SKS 53026 Skip if band not write protected. This SKS instruction shall cause the program to skip if the currently addressed band is not located in a write protected area. A minimum of 0.6 milliseconds must elapse between the potting of a new RAD address and the write-protect SKS for the SKS response to be valid. ### EOD 10026 Alert to POT # EOD 11026 Alert to POT, inhibit band incrementing. Either instruction shall enable the controller to accept a potted addresss provided the instruction is performed when the controller is in the ready state. The address is located in CO9 to C23 of the potted word. | Unit | Band | Sector | |-----------|------------------------------|-------------------------------------| | CO9, C10, | C11, C12, C13, C14, C15, C16 | , C17, C18, C19, C20, C21, C22, C23 | Should the alert to POT instruction be performed when the controller is not ready the subsequent POT shall not alter the address but will set the RAD Error Flip-Flop. When the alert to POT, inhibit band incrementing is used to alert the coupler, band incrementing is inhibited during the subsequent write or read operations. ### EOD 1N226 Alert to PIN This instruction enables the controller to gate the contents of the sector counter located in unit "N" to the computer by a PIN instruction. | | N | | Unit | |---|----|---|------| | 0 | or | 1 | Ø | | 2 | or | 3 | 1 | | 4 | or | 5 | 2 | | 6 | or | 7 | 3 | Contents of effective PIN address ### EOD 02266 Connect RAD memory write. This instruction shall cause the RAD to connect to the channel and write a consecutive number of words as defined by the contents of the interlace registers. Operations involving less than a multiple of 64 words result in the unused portion of the last sector being filled with all zeros. An attempt to write on a write protected band shall cause the RAD to disconnect from the channel and shall set the RAD Error Flip-Flop. ### EOD 02226 Connect RAD memory, Read. This instruction shall cause the RAD to connect to the channel and read a consecutive number of words as defined by the contents of the interlace registers. Parity is tested at the end of each sector. A parity failure will result in the Channel Error indication. The following test loops may be used to test basic RAD functions: # SKS 50026 Skip of RAD ready test. This loop tests the RAD response to the Ready Test. ### Insert Program | 100 | 04050026 | SKS test ready | |-----|----------|-----------------------| | 101 | 00100100 | BRU return, not ready | | 102 | 00100100 | BRU return, ready | Step through the program. The program shall skip from 100 to 102. Ground 37A03 in the coupler. The RAD shall now test busy and the program shall step through 100 and 101. # SKS 51026 Skip of no RAD error test. This loop tests the RAD response to the Error test. ### Insert program | 100 | 04051026 | SKS, test no error | |-----|----------|-----------------------| | 101 | 00100100 | BRU, return, error | | 102 | 00100100 | BRU, return, no error | Step through the program. The program shall skip from 100 to 102. Ground 31D23 in the controller. The RAD shall now test errors and the program shall step through 100 and 101. ### SKS 53026 Skip if band not write protected test. This loop tests the RAD response to the write protect test. #### Insert program | 100 | 04053026 | SKS, test not write protected | |-----|----------|----------------------------------| | 101 | 00100100 | BRU, return, write protected | | 102 | 00100100 | BRU, return, not write protected | Push start. Check that the write protect switches are down. Step through the program. The program shall skip from 100 to 102. Set the first write protect switch. The program shall now step through 100 and 101. ##
EOD 10026 Alert to POT test. This loop tests the ability of the RAD to accept ones and zeros into its' address register. ### Insert Program | 100 | 00610026 | EOD, alert to POT | |-----|----------|-------------------| | 101 | 01300105 | POT, zeros | | 102 | 00610026 | EOD, alert to POT | | 103 | 01300106 | POT, ones | | 104 | 00100100 | BRU, return | | 105 | 00000000 | Constant, zeros | | 106 | 7777777 | Constant, ones | Step through the program and observe the contents of the Address Register following each POT. # EOD 10226 Alert to PIN and PIN test. This test verifies that the RAD releases the computer from the PIN operation and displays the result of the PIN in the A register. The validity of the PIN data is not tested. # Insert Program | 100 | 00610226 | EOD, ale | ert to PIN | |-----|----------|----------|--------------------| | 101 | 03300104 | PIN, inp | out sector address | | 102 | 07600104 | LDA, dis | splay result | | 103 | 00100100 | BRU, ret | turn | | 104 | | PIN, dat | ta area | Display the A register. Step through the program. The data displayed in the A register shall vary between 008 and 778. ### EOD 02266 and EOD 02226 Connect to Write or read test. This program loop can be used to write or read from any location in the RAD units. The starting RAD address can be changed by altering the contents of location 130. Locations 131 and 132 respectively contain the write and read interlace values that may be modified to test multiple sector transfers. BP1 reset enables the write operation, BP1 set enables read. | Insert Progr | am | | |--------------|----------|-------------------------| | 100 | 04050026 | SKS, test busy | | 101 | 00100100 | BRU, return, busy | | 102 | 00610026 | EOD, slert RAD for POT | | 103 | 01300130 | POT, RAD address | | 104 | 04020400 | BPT1, test breakpoint 1 | | 105 | 00100113 | BRU, branch to read | | 106 | 00650000 | EOD, alert interlace | | 107 | 00614200 | EOD, set conditions | | 110 | 01300131 | POT, load interlace | | 111 | 00602266 | EOD, connect to write | | 112 | 00100100 | BRU, return to start | | 113 | 00650000 | EOD, alert interlace | | 114 | 00614200 | EOD, set conditions | | 115 | 01300132 | POT, load interlace | | 116 | 00602226 | EOD, connect to read | | 117 | 00100100 | BRU, return to start | | 130 | 0000000 | Constant, disc address | |-----|----------|---------------------------------| | 131 | 04001000 | Constant, interlace data, write | | 132 | 04002000 | Constant, interlace data, read | | | | | 1000 - 1777 Data area, write 2000 - Data area, read Run this loop with various record lengths and patterns, first by loading the write area with a known pattern then writing in on the disc and calling it back. When the RAD can be operated without error, using this program, the RAD Apocalyptic Diagnostic should then be used to complete testing. | FIG 4-1 | | | |-------------|--|--| | SELECTION | | | | LINI | | | | UNIT MODULE | | | | COMPLEMENT | | | | | | | | 1 | | | |---|--|---| | 65 | 돚 | 32 | | 73 | 풋 | 3. | | 7 | 돗 | 30 | | 59 | Ž. | 29 | | 73 | <u>工</u> | 28 | | 74 | ヹ | 27 | | 65 | Z
X | 26 | | 73 | Ŧ | 25 | | 74 | 풋 | 74 | | 25 | Z
大 | 23 | | 73 | 둦 | 22 | | 59 73 74 59 73 74 59 73 74 59 73 74 61 62 62 62 62 62 62 62 62 62 62 62 | NOTIFIED TO THE TEXT OF THE TEXT OF THE TEXT OF AN | 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 | | 6 | ≯ | 20 | | 62 | Š | 19 | | 62 | ≯ | ō≈ | | 62 | ≯ | 7 | | 23 | ≯ | 9 | | 62 | ₹ | ज | | 62 | R | Ī | | 62 | ? | ū | | 62 | ₩ | 12 | | 2 63 63 63 63 | ⋛ | = | | 63 | ≯ | 10 | | 63 | A | -S | | 63 | A | 00 | | 63 63 63 63 63 63 63 | AK AK A | 7 | | 63 | ₹ | 6 | | 63 | <u> </u> | 5 | | 63 | 흣 | 7 | | 77 | AK HK AK B | W | | 59 49 | ₹ | 2 | | 59 | 옷 | _ | | P FL FL HK HK HK HK AK HK HK AK HK HK AK AK AK AK AK AK AK AK AK SX SX 168 21 21 75 76 76 75 63 76 75 63 76 75 63 76 75 63 63 63 63 63 63 69 60 | 32 | |---|--| | FL 71 | 31 | | 77 | 30 | | また | 29 | | きる | 28 | | 75 | 27 | | 77. | 26 | | 63
A | 25 | | る芸 | 74 | | 元元 | 23 | | S 2 | 22 | | と手 | 2 | | FL FL HK HK HK HK AK HK HK AK HK HK AK AK AK AK AK AK AK SX SX 21 21 75 76 76 75 63 76 75 63 76 75 63 76 75 63 63 63 63 63 63 63 69 60 | 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 | | SA
W | 19 | | 63
AX | <u>~</u> | | AX
63 | 17 | | SA
X | <u>e</u> | | S A | 7 | | G A K | ュ | | 69
SX | ī | | es × | 12 | | 28 | = | | = = | 0 | | 17 TH | -9 | | <u> 구</u> 공 | œ | | -0
BH | 7 | | ₹× | 6 | | IH GH BH AX AX AX FL FL P | S | | ī Å | 4 | | FL 21 | W | | 2 FL | 2 | | 17 <u>1</u> | _ | FIG 4-2 | 20 20 14 14 14 14 14 14 14 14 14 14 14 14 14 | |--| | 31 30 29 28
20 20 14 14
51 51 10 14 | | 지 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 구 | | | \cap ## SECTION \overline{Y} ### LOGIC EQUATIONS # **GENERAL** This section contains a listing of all the logic equations that apply to the operation of the 9367C RAD coupler and selection units. This section is divided into the following three parts: - a) Logic Symbol Convention. A brief explanation of input gating structure, mechanization and terminology. - b) Logic Equations. Input equations for all register and control flip-flops, and output equations of unbuffered gates or gates buffered by logic amplifiers or inverters. - c) Glossary of terms. ### LOGIC SYMBOL CONVENTION A complete logic term is made up of three parts: a one-digit polarity or function identifier; a three-digit mnemonic; and a one-digit source tag. These three parts are described in the following paragraphs. First Digit. The first digit, when numeric, serves to identify the signal with its polarity and the type of connection it is making within the system. An odd number is assigned to a false or negated signal (true when at Ov). An even number is assigned to a true or assertive signal (true at +8v). The numbers "0" and "1" are reserved for flip-flop outputs only, "0" being reserved for the set and "1" being reserved for the reset side. The numbers "2" through "5" are used for buffer amplifier and inverter outputs; "4" and "5" being the second stage outputs, "6" and "7" for diode gate outputs, and "8" and "9" for cable signals. A letter instead of a number is used when a signal is generated or gated for the sole purpose of connecting to one of the inputs shown in figure 5-1. The first digit is left blank for signals whose polarity is either undefinable or insignificant such as write driver outputs and ground jumpers. Middle Three Digits Three alphabetic characters from the basic mnemonic of the signal. Signals of external origin, such as those from the computer buffer, retain their identity as much as possible with the addition of zeros when necessary to make up the three digits. Last Digit The last digit is a letter, or source tag, that defines the unit in which the signal is originally generated. The letters are assigned as follows: D -> Delayed signal - A Coupler signals - C Computer signals - S Selection unit signals - W Computer buffer signals The last digit is a numeric for a ground or jumper wire where the above convention is not used. FIG. 5-1 CIRCUIT INPUT/OUTPUT CONVENTION # LOGIC EQUATIONS 9367 D SELECTION UNIT ``` 2SIPS = 2SECS YREVS = OREVS SREVS = ZIDXS REVS = ZIDXS 2IDXS = \overline{9IDXS} 2 SECS = 9SECS 3 RDYS = BRDYS ZWENS = TWENA TUSLA 3 RDYS ZWLKS & WENS = ZWENS 2 CL15 = 3CL15 ZUSLA 2 CL2S = 3 CLZS ZUSLA 3 CL15 = 8 CL15 3 CL25 = 8CL25 2 USLA = 9USLA 2 CLKS = IMCCS 2 CL15 SMCC = ZCLZS 2Mcc = ZCLZS tMCC = 9SECS (SHIFT) 2 SFTS = ZWENS OMCCS (LCAD) 2 LDWS = ZWENS IMCCS 3 DRDS = OREVS ZIDXS 3 Alls = 8 All A 9USLA 3 AIZS = 8 AIZA PUSLA 3 A 135 = 8 A 13 A 9 USLA 3 AI4S = 8AI4A 9USLA 3A15S = 8A15A 9USLA 3A165 = BAIGA 9USLA 3 A 175 = 8 A 17 A 9USLA 3 A185 = ODOIS PUSLA ``` HAIIS = BAILS PUSLA 4A12S = 3A12S 9USLA 4A135 = 3A135 9 USLA 4A145 3A145 9USLA 7 4A155 = 3A155 9USLA 4A163 = 3A16 S 9USLA 4A175 = 3A175 PUSLA IDOIS 4 A 185 = 9USLA SAIIA 5 A115 = 5 A125 = BAIZA 5 A 13 S = 8 A 13 A 5 A 145 = 8 A 14A 2DS15 = HAIIS + HAIZS 20525 = HAIIS + 5A125 6 WP15 = SOIS ZGP1S + SOZS ZGPZS + 5035 2GP35 + 5045 ZGF45 + SO55 ZGP15 + 5065 ZGPZS + 5075 2GP35 + S085 2 GP45 3 WP15 = 6 WP15 20535 = 5A115 + 4A125 20545 = 5A115 + 5A125 6 WP25 = SO95 ZGPIS + 5105 ZGP2 5 + S11 5 2673 S + 5125 ZGP45 + 5135 2 GP15 +5145 ZGP25 +5155 2GP35 +5165 2GP45 TO WRITE PROTECT CIRCUITS 3WPZS = 6WPZS ZWLKS = 3WP15 3WP25 2GP15 = 4A145 + 4A135 ZGP25 = 5A145 + 4A135 ZGP35 = 4A145 + 5A135 ZGP45 = 5A145 + 5A13S = ODOZS s Dol 2001 = 00025 + DOI = 3 DRDS 5D07 = 0D0352002 = 00035 tDOZ = 3DRDS 5 D03 = 00045 2003 = 0004S LDO3 = BORDS SD04 = 00055 ~DO4 ----0 D05 S t Do4 = 3DRDS S DO5 = ODO65 2 DO5 = 00065 t Do5 = 3DRDS SDO6 = ZSECS ~DOG = ZSECS t DOG = 3DRDS 90D15 = ODOIS 9USLA 9CD2S = ODOZS 9USLA 9 C D 3 S = 0 D 0 3 S 9 USLA 9CD45 = ODO45 9USLA 9CD5S = ODO5S GUSLA 9CD65 = ODOGS 9USLA 951PS = 251PS 9USLA ``` 9 DOIS = 0 DOIS 3 PSLS 9 DOZS = 0 DOZS 3 PSL 5 90035 = 00035 3PSLS 9 DO45 = 0 DO45 3 PSLS 9 D 0 5 5 = 0 D 0 5 5 3 P 5 L 5 9 DO6 S = 0 DO6 S 3PSLS GENPS = ZSIPS 3PSLS 3PSLS = 8PSLA STC1 = ZLDWS ZWD35 ZCL15 + 3 WENS ZRLIS ZCLIS ATC1 = ZLDWS 9WD3A ZCL15 + 3 WENS 3RL15 ZCL15 + ZSFTS ZCL1S STCZ = ZLDWS ZWD15 ZCL15 + 3WENS OTCIS ZCLIS + ZSFTS OTC15 2CL15 2TCZ = ZLDWS 9WDIA ZCLIS + 3WENS 1TC15 ZCL15 +2 SFTS 1TC18 2CLIS STC3 = ZLDWS ZWD4S ZCLIS + 3WENS ZRLZS ZCLIS 2 TC3 = 2 LDWS 9 WD4A ZCLIS + 3 WENS 3RLZS ZCLIS + 2 SFTS 2 CLIS STC4 = ZLOWS ZWDZS ZCLIS + 3 WENS OTC 35 ZCLIS +2SFTS OTC3S ZCIIS 2TC4 = 2LDWS 9WDZA ZCLIS + 3 WENS 17035 ZCLIS +
2SFTS 1TC35 2CLIS ``` PIN SECTOR COUNTER > TRACK CONVERTER SPCI = OPCZS APCI = OPCZS t Pc1 = 9 SECS SPCZ = OPC35 1 PCZ = OPC3S t PCZ = 9SECS SPc3 = 1Pc15 ZWD1S APC3 = 1Pc15 ZWD15 tPc3 = 9SECS ZRLIS = 3RLIS BWENS 3RL15 = 8RL1S 3WENS 2 RLZS = 3RLZS 3WENS BRLZS = GRLZS BWENS ZWDIS = 9WDIA ZWDZS = 9WDZA AEDWP = 2EDWS ZWD45 = 9WD4A 8WLIS = ITCZS + OPCIS BWLZS = ITCHS + OPCIS 9RDIS = OTCZS 9USLA 9RDZS = OTCHS 9USLA 9RD35 = OTCIS 9USLA 9RD4S = OTC3S 9USLA 9CLKS = ZCLKS 9USLA 9WLKS = ZWLKS 9USLA PREAMBLE CONVERTER # LOGIC EQUATIONS 9367B, C Selection Unit. ``` 90Dns = ODOns (enable term on coble driver is 9USLA, low true logic) LCLKS = 9RCNA . 2WCOS + 2RCNS 12RCKS GCLKS = 6CLKS (enable term on cuble driver is quelA, low true logic) t DOIS = 0 DO2S + D02S = 0 D03S t D035 = 0 D045 t D048 = 0 D055 +D05S = 0 206S +DO6S = 2 SECS 3 DOIS - DOGS = SIDXS (low true logic) (enable term on cable 1YSCS 9ENPS = Jariver 15 3PSLS, low true logic) 9Dons = ODONS SRCKS = 2RCSS rRCKS = 0.55 MS = RDIS = ORDDI · RCSI r RDIS = IRDDI RCSI SRD25 = ORDDZ · RCS2 rRD2S = / RDD2 · RCS2 SRD3S = 0 RDD3 1 RCS3 rRD3s = / RDD3 · RCS3 = ORDD4 RCS4 S RD 4S = 1 RDD4 · RCS 4 r RD 45 ``` ``` cable driver enabled by 9RDIS = DDOIS qushA (low true logic) 9RD2S = ODO2S 9 RD3 S = 0 D035 9 RD4S = 0 D04S 9 SIPS = 25ECS+2IDXS de reset = BIDXS (lowtruelogic) SWCKS = 2WCAS rwcks_ = 2 wc AS SWCBS = 1 WCKE s WDE 1 = 2 WDIS · I WCKS · 2 WCAS + OWCKS . 2WCAS r WDE 1 = 9 WDIS . IWCKS . ZWCAS TOWCKS 2 WCAS SWDE2 = 2WDZS · I WCKS · ZWCAS + owers · wcas r WDE2 = 9 WD25 - I WCKS - 2WCAS + D WCKS , 2WCAS SWDE3 = 2WD3S . I WCKS 12WCAS + D WCKS . 2 WCAS rWDE3 = 9 WD3S 1 /W CKS . 2 WCAS +OWCKS, 2WCAS SWDE 4 = 2WD4S · IWCKS · 2WCAS + D WCKS 12 WCAS TWDE 4 = 9 WD4S · IWCKS · 2WCAS + OWCKS · ZWCAS bwiks = Or combination of the 4-uples of All, A12, A13, and A14, each pulled over by the switch sw-n A comb where = AU AIZ AIZ A14 AU. ATZ. AT3. A14 = A11. A12. A13. A14 awks = bwkks (cable driver enabled by ``` que LA , low true logic) 2ACTA = 2 00FA 0406A 1 X03A RAFLA = RAFAN - RAFBA - R AFCA 2 AFAA = 0 A 12 A . 0 A 13 A 2 A FBA = 0 A 14A · O A 15A · O A 16A · O A 17A 2. A FEA = OA 19A · OA 20A · OA 2/A · OA 22A · OA23A · OA18A · / XO5A 2 AINA = 20/FA 20/4 A . 2 LSC A . 0 KO6A . 3 AFLA . 2 CLK 4 + 2RFIA 2CLKA 3 AFLA t AU9A = OA 10A 4 A09A = 2 LDAA . 8009C t AIDA = DAIIA 4 A 10 A = 2 LDAA 8 C10 C t A11A = OA12A 4 A 11 A = 2 L DAA · 8 C 11 C + A12 A = O A 13 A 4 A 12 A = 2 L DAA - 8 C / 2 C + A 13A = 2AFBA 2AFCA . 2 AINA 4 A 13 A = 2LDAA . 8C/3C t A 14A = 0 A 15 A 4 A 14A = 2 L DAA 8C 14C tA 15A : OA16A 4 A 15 A = 2 L DAA · 8 C 15 C + A 16 A = 0 A 17 A 4A16A = 2LDAA 8C16C talla = 2 AFCA 2 AINA 4A17A = 2LDAA 8C17C tA18A = OA19A 4 A 18 A = 2 L D A A 8 C 18 C t A 19 A = O A 20 A 4 A 19 A = 2 LDAA 8 C19 C tA20A=0A2/A 4A20 A = 2LDAA 8C20C 95 TARIA = DARRA YAZIA = 2LDAA 8CZIC t ASSA = OASSA YAZZA == LDAA = CZZC TADER = DAINA YAZZA = DLDAA 8CZZC & BSCA = 200FA . 2 HSDA . 2 SIPA 2CNTA = 201FA BUOIA 2CLKA +202FA BUOIA 2CLKA +2403A 2CLKA 2 DMAA = 9017W.8019W.3020A 8021W.8022W 3023A 2 DMWA = 8 W 13 W . 3 W 14 A . 8 W 10 W . 3 W 11 A 8 W /2 W 6 DRKA = 200 FA BUOZA + 2 UDIA · 3402A · 2CLKD = DR/A = IFOZA (2W56A . 1X06A . 3CLKA + 1 X03 A) 6DRZA = 201FA . 1X08A . 0X09A . 5CLKD LECWA = 201FA · O XO8A · 2 XO3A · 3 W 50A · 3 W 60A + 202FA · DUO4A · 3W 50A · 2DM WA (IXO6A+ IUO3A · IXOA) DERWA = 200FA OKO5A 2X03A TECIA = 201FA : 2 WLKA : 4CLKA +200FA : 2 UO3A : 2 SIPA : 4CLKA addies remoted or une of the 4E01A = DXOIA IXO2A : 8PT2C 7ED: A = 200FA : 2BUCA : 2DMAA SFOIA = 2ERWA : 2DMWA : 3 W 90A : 4CLKA Y FOIA = 2RFIA : 4CLKA SFO2A = 2ERWA : 2DMWA : 8 W 90W 4CLKA YFO2A = 201FA : 2LSCA : 3UOZA : 2KO6A · 4CLKA +201FA . ZWLKA . 4CLKA 10 SGOIA = 2IDNA · 2012A rGOIA = AIDNA 3CIZA SG02 A = 2 I DN A . 2 C/3 A rG02A = 2 IDN A . 36/3A 7651 A = 0901A +0902 A 7GS2A = 0G0/A+1G02A 7GS3A = 1GO1A + 0G02A 7653A = 1601A +1602A 2HSDA = I WOIA . OXOSA · IEO IA +2401A 1X0/A+0X03A.1403A 2 IDNA = 2DMAA. &CI6W. & IOCW RIDTA = RDMAA BC16A 8 HOCW. BINTA = 200FA . 2 SACA . OBSCA . QUOIA . I XO3A . / XO/A TKOIA = DKOZA KOIA flip flop is pulled false by 7DRKA buffered and ted to OKOIA t KO2 A = 0 KO3 A t KO3A = 0 KO4A t KO4A = O KOSA · 2 KO6A · 2 LSC A · 2 CNTA S KOSA = O KOGA . JKS7A rK054 = 0 K06A 5 KO6A = 0 KO7A r KO 6 A = 2 KO7A + 201 FA OMO/A 2401A SKOTA = OMUIA SK57A YKOTA = OMOIA JK57A = 201FA . 2KO6A . 2UDIA 2 L DAA = O XOIA · O XOZA · CARTON APTQA 2LDSA = 201FA1202MA · 2CLKD 2LDVA = 201FA,2 X03A OXO6A, 2W60A, 2CLKA, OSTVA 2LDEA - 201FA . U XO7A . ACLKA 3 LRCA = 202FA · 200MA · 2 CLKA 2LSCA = O MOIA · 2KO7A SLVRA = 202 FA . U XO7A . I XO8A . 2CLKD +202FA O X08A , 200MA . 3CLKA SMOIA = OMOZA, ZCNTA MOIA = 2 CNTA SMOZA = 1 MOIA · 2CNTA rMOZA = 2CNTA (ast 2 words 2 NNLA = OKOIA · OKOZA · OKOZA · OKOYA Insterna 2 NXLA = 3NNLA + 1KOGA NUF = 60 + NOT POSTABLE NUFA = 300FA . 2014A PUF = 00 + POSTAMBLE PUFA = 300FA NUFA A PSTA = IUOZA · 2KOGA 3PCPA = 3POIA · 2LRIA + 2 POIA · 9 RDIS +3102A 2LR2A + 2 PO2A 9RD2S +3 PO3A . 2 LR3A + 2 PO3A . 9 RD3 S +3 PO4A . 2 LR4A + 2 PO4A , 9 RD4S 8 pwRA = 85TOC + level from power protection cct which 15 true if ac voltages are within normal range t POIA = 201FA . 4WDIA . 4CLKA + 2 LRIA 2U 02 A. 4CLKA YPOIA = 2 SPRA TPOZA = 201 FA 4W DZA HCLKA +2LR2A.2UO2A.4CLKA yPOZA = 2 SPRA t PO3A = 201FA + 4WD3A + 4C6KA +2LR3A. 2402A. 4CLKA 4PO3A =2SPRA tpoth =201FA · 4 WD4A · 4 CLKA TZLRYA · ZUOZA · YCLKA 4 PO 4A = A S PRA 2RF 1 A = 202 FA . 3401A . 3402A . 202 MA . 2K06A PNCA = 300 MA . 2K06A 2PTQA = 8PT 1C. 8 Q20 C 9RENA = 0405A 1 : 5 . . . 9RCNA = 202FA $6RTOA = 1X0/A OX02A \cdot 9ENPS$ $+ 0X0/A \cdot 2PT/A$ 2 SACA = 2 CUHA . 2 CLHA 2 CUHA = 0A18A · 9CD1S + 1A18A · 2CD1A + 0A19A · 9CD2S + 1A19A · 2CD2A + 0A20A · 9CD3S + 1A20A 2CD3A 2 CL HA = 0A21A 9CD4S+1A21A 2CD4A + 0A21A 9CD5S +1A22A 2CD5A + 0A23A 9CD6S +1A23A 2CD6A 2 SHSA = 201 FA 302 MA 2CLKA +202 FA 2CLKA 6510A = 20MAA · 1X03A · 3C14A · 3C13A · PUFA +20MAA · 3C14A · 2C14A · 1E01A +20MAA 2C13A · 2C14A · 9WLKS 25 PRA = 201 FA 2 U 0 1 A 3 U 0 2 A SSTVA = 5CLKD VSTVA = 250 MS SSOIA = 25HSA OSOZA HCLKA +2LDSA OZOIA HCLKA V SO 1A = 25HSA · 1502A · 4 CLKA + 2 LDSA · 1201A · 4 CLKA SSO2 A = 0503 A · 2 SHSA YSOAA = 2 LDSA · OZOZA rsozA: 25HSA (OSO3A on inhibit reset) SSO3A - 2 LRIA - 2 SHSA AZOJA = OZOJA ZLDSA r 503A = 2 LRIA (2 LRIA on inhibit reset) \$ 504A = 0505A 2545A 4 4 CLKA +0204A 2LDSA 4 CLKA YSO4A = 1505A . 2545A . 464KA + 1204A . 2405A . 464KA 5505A = 0506 A 2545A 4505A = 0205A . 2LDSA rSOSA = 25HSA (OSOGA on inhibit reset) SSOGA = 21R2A.2SHSA 4506A = 0206A . 2 LDSA rsobA = 25HSA (2LR2A on reset inhibit) 5507 A = 0508A , 25HSA , 4CKA +0207A, 2LDSA, 4CLKA rsoTA = 1508A 25HSA 4CLKA + 1207A. 2LDSA , 4 CLKA SSORA = OSDAA ASHSA 4508A = 0208A 2LDSA rsorA = 2545A (0509A on reset inhibit) 5509A : 2 LR3A , 2 SHS A 4509A = 0209A 26DSA rsogA = 25HSA (2LR3 on reset inhibit) 5510 A = 0511 A . 2545A . 4CLKA +OZIOA · ALDSA · 4CLKA r S10 A = 1511A 25HSA 14CLKA +1210A 2LDSA : 4CLKA SS11A = OS12A 25HSA 4511A = 0211A.2LDSA rSIIA = 2SHSA (OSIZA on reset inhibit) SSIZA = ZLR4A ZSHSA 4512 A : 0 Z 12 A · 2 L DS A rs12 A = 25HSA (2LR4A on reset inhibit) 9US/A = 1A09A · IAIOA 9452A = / A09A . O A10A 9453A = OA09A 1A10A 9 US 4 A : O A 09 A : O A 10 A SUO/A = DERWA DCLKA 4401A = 2 LDAA ruoIA = 201FA 2WPCA · 4CLKA + 201 FA 2WLKA . 4CLKA +202FA 2402A 2403A 4CLKA 2 TNIA = 1 XO3A PUFA 2IDTA ``` SUD2A = 202FA - 2401A - 1403A , 200MA - 2CLKA +202 FA 2401A . 2403A . 1503A . 9 RDIS . 2CLKA +201 FA. 2401A. 9WLKS. 2CLKA YUOZA =200 FA 2 SACA 2 HSDA OBSCA - 402 A = 200 FA . OKO5A . 2CLKA +201FA . 2 NXLA 2LSCA . 2CLKA +202FA ,2NXLA. ZLSCA, ZCLKA +201 FA . 2401A . 202 MA . OKOTA . 2CLKA SUDBA = 201FA DUUTA PNCA 44CLKA +201FA · 3402A · 2LSCA · 2AFLA · 4CLKA +202 FA 0401A - 0402A 202MA 0KU7A . 4CLKA +202 FA 1401A 1402A OXOTA 1X08A, 4CLKA ruosa = 201FA · DuoIA · PNCA · HCLKA +200 FA 1 X03A 4CLKA + ZERWA · 4CLKA +202FA 2 401A 2402A 200MA 14CLKA +2RFIA . 3AFLA . 4CLKA SUOYA = 201 FA 2NNLA 2KOJA 202MA - 2CLKD de +202 FA 3401A 200MA r 404 A = 200 FA , 2 ERWA de +2RFIA 5 405 A = 200 FA . O 402 A . O KO7 A . 200 M A dc YUOSA = RERWA . 2DMWA . 8W90W . RCLKA dC +2RFIA d C S UOG A = 2 I DTA YUOGA = 2 PTQA . O XOIA dC 9 VOPA = OPOGA 2W60A (Enabled by 302 FA (low true logic)) 9 m A = OVn A. 2W60A . (Enabled by 302 FA (low true logic) n=01 to 12 dc 5 Vn A = 8 Rnw · 2 LDVA + OZnA · ZLVRA YVn A = /ZnA·2LVRA d C h = 01 to 12 QWENA = ZOIFA 9 WDIA = 201 FA (2401A 2403A+2014A OPOIA +2234A OSOIA) 9 WD2A = 201FA (2401A . 2403A +2014A . 0 PO2A +2234A . 0 SO4A) 9 W D3A = 201FA (2401A · 2403A + 2014A · 0 PO3A + 2234A · 0 $ 07A) 9 W D4A = 201 FA (2401A 2403A +2014A 0804A + 2234A ,0510A) ``` 6WESA = 202 FA . 3 WOIA . 3 WOZA 200 MA . 1 KO6 A . 1 KO7A . 3 PCPA , 2 CLKD + 0 XO4 A = RATE ERROR WRITE PROTECT Address BOUNDARY ERROR 6 WHSA = 200 FA. 2DM WA (IXD3A . 3BUCA +2403A 2 SIPA) ### 7W56A = ZW50A + 3W60A 2WPCA=2401A · 2K06A · 202MA SXOIA = NUFA · DUOGA · 2 PTQA YXDIA = NUFA 2PTIA S XO2A = 2IDNA 4 XO2 A = 200 FA . 0 XO1 A . 1 XO3 A VXO2A = 2RTIA + 2PTIA S XQ3A = 200FA 2BUCA 2DMAA r XO3A = 200FA DXO4A . 2CLKA +201FA. 2WLKA 12CLKA + (2DMWA- 9EDSW) 2CLKA . 3401A S XO4A = 202FA 2PSTA I XO9A 3UOIA 200MA 2CLKA EFFE + 201FA . 0X08A . 0X09A . 202MA 5CLKD . 5401A YXOUA = DOFA DOLKA SXOSA = 2014A · 2TNIA rXOSA = 2 TNIA (2014A applied to reset inhibit) SX06A = 201FA 2W56A.3CLKA+201FA.3W50A.1X03A.3CLKA +202FA 3401A 1404A 202MA . 3CLKA +202 FA 2 W56A 0404A.3CLKA Y XOBA = ZERWA - ZCLKA +201FA · 3 CLKA +202FA & GUOIA 1403A 3CLKA (1MOIA+1X09A) 5 X07 A = 201 FA . O X09 A . I X08 A - 3 CLK A +202FA · 2X06A · 1M01A · 3 CLKA +202 FA 2X06 A . 1 X09 A . 3CLKA YXOJA = 3 CLKA 5 X08A = 201FA · 1 UO4A · 0 X 0 9 A · 3 CLKA ASSESSED TO THE PROPERTY OF THE PARTY 4202 FA . 2 XO6A . 1 XO9A . 202 MA. 2CLKA r XOSA = 201FA.OXO6A.2CLKA +202FA 202MA, 3CLKA y XO8A = ZERWA SX09A = 201FA | 2 W PCA | 2CLKA +201FA | 202MA | 3UDIA | 2CLKA +202FA | 0X07A | 3CLKA +202FA | 0 X08A | 3CLKA 4 X09A = 240/A 3402A T X09A = 201FA · 0 X07A · 2CLKA (202MA · 3U01A) 9X12A =
DMWA DC $\mathfrak{D}\subset$ SZNA = OVNA 2LDZA +OSNA 2LRCA rZnA = 15nA. 2LRCA 200FA = 1F01A 1F02A 200MA = 1M01A 1M02A 201FA = 1F01A 0F02A 201UA = 1U01A 1U02A 202FA = 0F01A 1F02A 202MA = 0M01A 202MA = 1U01A 0U02A ## OUT OF SEQUENCE 3DRAA = 3ACTA · 8PWRA 2 LRIA = 9RDIS 2 LR2A . TRDAS 2 LR3A = 9RD3S 2 LR4A = 9 RD45 6 DAPA = 1X01A . 1X02 A For 9001A-9006A 9367 C RAD Glossary of Logic Terms A09-A23 Address Register ACT Clear the A register on Alert to POT AFA Address bits 1? and 13 both true AFB Address bits 14 through 17 all true AFC Address bits 18 through 23 all true AFL All bits true in A register (12 through 23) (Band 77 sector 77) AIN Increment the address in the A register В BSC Beginning of sector pulse triggered by trailing edge of SIP BUC A signal from the computer that is true during an EOM buffer control mode instruction. С CO9-C23 Computer C register terms. CD1-CD6 Current sector address from the selected unit to be compared against the sector bits in the address register. CLH Lower half of sector address compare. CLK Basic clock. Derived from clock track in phase zero and one. In phase two it comes from the read data signal from disc. CMC Write enable signal inverted to center taps of read transformers. CNT A signal that allows the M and K registers to count. CUH Upper half of sector address compare DO1-D06 Current sector address register. DAP Enables DO1-DO6 cable drivers for PIN DMA RAD address contained in C register. DMW RAD address contained in Unit Address register. DRA Direct reset to A register. DRK Reset count registers M and K DRV Direct Reset V register DRZ Direct Reset Z register E E01 Error flip flop ECW Data character transfer clock to I/O channel. EDSW A signal from DACC when word count =4, used for an early EARLY DISCONNECT SIGNAL interrupt on a scatter read operation. ENP True while D register is incrementing at sector pulse time. ERW Enter read or write phase from phase zero. F F01-F02 Phase counter flip flops PIN operation. G G01-G02 Selection unit address register used for PIN operation. 102 GSI-4 Selection unit address gates. These four lines are used to select the addressed storage unit whose sector address is required for the HSD A conditional signal level required in phase zero to trigger the beginning of sector one shot, BSC, with the sector increment pulse, SIP. Ι IDL Address increment period. This one shot is true during the time that the A register is incrementing. IDN An Alert to PIN command is in progress. IDT An alert to POT command is in progress. IDX Index pulse from disc, which is used to reset that sactor counter addressach revolutions type of read as write. INT The interrupt signal generated when the sector address equals the current sector location. IOC A signal from the computer **denoting** that an EOM command in the Input/Output control mode is being executed. J JK57 A signal that enables the resetting of the character counter at the end of the presspreamble. K01-07 Character counter register. L LDA A signal to load the address register on a POT command. LDS A signal to load the S register with data from the Z register. LDV A signal to load the V register with data from the Rn lines from the I/O channel. LDZ A signal to load the Z register with data from the V register LR1-4 Data lines from the controller cable receivers. These four bits of data from the selection unit are placed into the S register during phase two. LRC A signal to load the Z register with data from the S register. LSC A signal that denotes two 12 bit characters have been written or read. It is true every six pulse times. LVR A signal to load the V register with data from the Z register. M MO1-MO2 Modulo 3 count register. Each full count of this register signifies that one 12 bit character has been written or read. Each full count of this register toggles the character (K) counter. N NNL A signal which denotes that the character (K) counter has a counted 125₁₀ characters. (K01-K05 are all true) NXL A signal that marks the last (64th) word time of a sector. NUF Phase zero or not postamble time. P POI-PO4 Parity checking and generating register for each of the four tracks. PCP parity compare signal used in checking longitudinal parities of all four tracks at the end of a sector read. A signal derived from the character and modulo 3 counter which inhibits setting of UO3 after the 8th preamble character is written, thus causing the last two preamble bits to be zeros. PSL A signal in each selection unit that enables the output of the sector counter during a PIN operation. PST Data time or first 6 clocks in postamble. Time for setting rate error flip flop X04 on read. PT1 The POT 1 signal from the computer. PT2 The POT 2 signal from the computer. PTQ The same as PT2 although it is made up in the coupler of POT1 and Q2 signals from the computer. PUF Postamble time or phase zero. PWR Power on signal. Normally true. It goes false when power fails or when the computer START button is pressed. Q Q20 The Q2 signal from the computer. R RC01-4 The 600 ns one shot output of the clock discriminators. RCC1-4 The unused clock compensator flip flop in each of the four read circuits. RCD1-4 The 600 ns one shot output of the clock discriminators after it has passed through a 200 ns delay. RCK The read clock pulse one shot. This generates the clock pulses used on in phase two. RCL1-4 The outputs from the read limiter cicuits which feed the clock dicriminators. RCN The signal that is true only during phase two which selects the read clock signal for CLK. RCS1-4 The read clock signal out of each of the four read circuits. The first of these to occur generates the coupler clockaduring #21t. RCS The ORed output of the four track read clocks, RCS1-4 RD1-4 The data output flip flops of each of the four read circuits. RDA1-4 The outputs of the read preamps. RDD1-4 The outputs of the read data differential amps which feed the inputs to the read data flip flops. RDL1-4 The outputs from the read limiter circuits which feed into the read data differential amps. REN Read enable signal to the selection unit which enables the portion of the X selection circuits that allows the read transformers to be used. RF1 A signal which is true only at the end of the read phase when the last character has been accepted by the channel. RTO The RT signal to the computer that gets a POT or PIN command out of the wait phase. RTI A signal fred emergence and that affin command has ended. S01-12 The 12 bit character assembler/disassembler register. SAC Sector address compare gate which is true when the contents of the sector portion of the address register is equal the sector address (D) register. Sector timing pulse out of the Index Sector Decoder. SHS The signal that causes the S register to shift. SID The output of the Index Sector amplifier. SEC SIH The output of the Index Sector read head. SIM A signal that is true during either the sector or index pulse time. SIO The response signal to the computer during an SKS instruction. When this signal is true to computer skips the next instruction. SIP Sector increment pulse. The pulse starts at the leading edge of SEC and lasts about 1.2 μ s. This delays the start of BSC to allow the D register sufficiently settling time after incrmenting. SPR Initialize the Parity flip flops at the beginning of the read or write phase. STO The signal from the START button on the CPU STV 250 me one shot which is a strobe pulse to load the V register with the LDV signal. This signal is true only during the EOM alert to POT and it allows the setting of the non-increment mode flip flop XO5 from C14. U This flip flop sets when the controller accepts a new address at the sector pulse time after an EOM, POT sequence, or when phase one or two is entered. Essentially it defines leading gap and preamble time, and search for starting sector. U02 This flip flow enables the character and module 3 counters to be clocked. U03 This flip flop generates the preamble pattern during write preamble time. During read preamble time it defines the search for end of preamble time. It also signifies end of data transfer time on a read operation. Another use is to detect an overflow condition. This flip flop defines end of write time and also initiates read ECW's during phase two U05 Generates the read enable signal U04 U06 Recognizes an EOM alert to POT command and remains set until a POT is executed. US1-4 Four unit select circuits in controller which sample each of the four configurations of A09 and A10. USL Unit select signal in selection unit. V V01-12 V register (character buffer register). | | | W | |---|--------|--| | | W01-38 | Write driver outputs | | | W9-W14 | Signals from the I/O channel unit address register | | | W50 | Signal from W5 flip flop in I/O channel | | | W60 | Signal from W6 flip flop in I/O channel | | | W56 | A signal true when W6 is set and W5 is reset (Data transfer time) | | | W90 | Signal from W9 flip flop in I/O channel. True on outputs from | | | | CPU only | | • | WCA | Output of clock read amplifier | | | WCK | A clock signal used in the selection unit during phase zero and one. | | | WCH | Outputs from the clock read head | | | WCO | Output of phase zero and one one shot which generates CLK. | | | WD1-4 | The four write data lines from the controller to the selection unit. | | | WDE1-4 | The four write data flip flops | | | WEN | Write enable signal to the X selection gates. | | | WES | The error line to set the I/O channel error flip flop. | | | WHS | The halt signal to the I/O channel. | | | WLK | An attempt was made to write in a protected disc area. | | | WPC | End of preamble signal | | | | | | | | X | | | VA1 | Consequence DT giornal to computer on a DOT command | | 2 | X01 | Generates RT signal to computer on a POT command | |---|-----|---| | 2 | 02 | True if POT
given at legitimate time or an alert to PIN command | | | | was executed. | | 2 | 03 | RAD connected indicator | | 2 | κ04 | Rate error flip flop | #### X (Cont'd) | X05 | Non-increment mode indicator. This inhibits the incrementing of the | |-----|--| | | band address with the index pulse. | | X06 | The R lines from I/O channel are ready with data on a disc write | | | operation or the character on the Z lines to I/O channel has been | | | accepted by the channel on a disc read operation. | | X07 | Time to transfer V register to Z register on a disc write operation | | | or time to transfer Z register to V register on a disc read operation. | | X08 | Allows a late Z to V transfer on read if the I/O channel was temporarily | | X09 | delayed in accepting a character. Z register empty indicator. | | X12 | 12 bit Single Character Register selection line to I/O channel. | Y The inverse of this signal allows setting the band address in YSC the controller to the band address register in the selection unit during sector increment pulse time. Z | Z 01-12 | Character Storage Register (Z Register). | |----------------|--| | OOF | Phase zero signal | | OOM | Module 3 counter flip flops both reset | | Olf | Phase one signal | | OlU | U01 and U02 flip flops both reset which is phase 0 or postamble time | | | of phase one or two | O2F Phase two signal O2M Flip flop MO1 is set 223U Flip flop U01 is reset and U02 is set which signifies data read or write time. #### Appendix A #### 9367 B Differences The Model 9367 B utilizes a drum memory rather than a disc. The 9367 B is available in three different capacities. | 9367B-01 | 131,072 word capacity (524,288 alphanumeric characters) | |----------|---| | 9367B-02 | 262,144 word capacity (1,048,576 alphanumeric characters) | | 9367B-04 | 524,288 word capacity (2,097,152 alphanumeric characters) | Additional memory is available by adding from one to three extender units. These have the same capacities as above but are called: 9367B-11, 9367B-12 and 9367B-14 #### Mechanical Characteristics A standard Bryant Auto-Lift drum consists of a drum and spindle assembly, a high-performance plated magnetic medium on the drum surface, an induction motor, a housing, dust-tight removable panels, and magnetic read/write Uni-Just data heads which can be adjusted radially. The drum is 10 inches in diameter and vertically mounted and comes with a maximum of 512 data heads plus 6 pre-recorded timing tracks. It utilizes a 3 phase induction motor and rotates at approximately 1730 RPM There is actually room to mount 640 data heads. #### Recording Media Surfaces of standard Auto-Lift drums are coated with Bryant's super-finished magnetic plating. This plating has a tough, abrasive-resistant surface, and gives extremely uniform playback and resolution characteristics over large drum surfaces with a low noise level. #### Magnetic Heads Uni-Just aerodynamic data heads are used to optimize drum performance through a broad range of operating frequencies and recording densities. These heads can be adjusted for proper playback and the heads can be replaced, if required, without taking the unit out of operation. Electrical and mechanical specifications are given in Table 1. #### TABLE A-1 SPECIFICATIONS Pole Piece Gap Length Pole Piece Frequency Range Inductance-half-coil (at 140 KC) D-C Resistance Drive Current 10.00025 inch Up to 2 MC 17-22 microhenries 1 ohm to fit application (Up to 250 ma) Balance-half-coil to half-coil Resonant Frequency 3.8 megacycles (minimum) Track Width 0.020 inch Track-to-track Spacing 0.035 inch Surface Speed Limits 1,000 to 3,500 inches per second The drum heads are mounted on head bars around the outer surface of the drum. These head bars are mounted in a vertical position and each can hold 20 heads. There are 16 of these head bars mounted around the upper half of the drum and 16 more head bars around the lower portion of the drum. These bars are numbered from 1 to 32 starting in the back of the drum on the top row and coming around the left side to the right side. There are four upper and four lower head bars in each quadrant. 10% Each bar has the capacity of holding 20 heads but only 16 are mounted. Eight are at the top with a space for two under these; then eight more are mounted with two more spaces at the bottom of the head bar. The 6 pre-recorded timing tracks and their heads are located at the bottom position of head bars 26, 27, 28, 30, 31 and 32. The clock and sector data is brought out on a separate cable than the data. The spare timing tracks are wired to separate connectors. Thus, changing from one set of timing tracks to another is accomplished by moving one cable plug to a different connector. #### Auto-Lift Conceptor Magnetic drum memory design dictates that a magnetic pickup be maintained at a relatively fixed distance from a recording media and in extremely close proximity to it under all conditions of system environment as dictated by the particular circumstances. These conditions include **shock**, vibration, thermal changes and extremesteady-state conditions, and different atmospheric densities and humidity levels. Bryant has successfully achieved this goal with the Auto-Lift Series of flying head drums. The Arto-Lafe Case area Sparses concess Auto-Lift drums feature a simple, automatic head-drum spacing mechanism which wworks together with an adjustable flying head to assure reliable operation. Wholly different in concept and design, these devices have been operationally integrated with the drum to assure the ultimate in fail-safe performance by completely eliminating the prime cause of drum failure - inadvertent head-to-drum contact. Flying heads were devised to maximize temperature performance capability as well as to expand the data storage density of the drum The major temperature problem with drums is the rapid shrinking of the housing when the drum is turned off because then the heads are moved closer to or in contact with the drum surface. This condition results in head-to-drum contact if the drum is restarted before the drum shrinkage has caught up with the housing shrinkage and has restored the proper head-to-drum spacing. Some types of flying heads used with conventional drums can "fly" only when drum speed is sufficient to produce a laminar film of air capable of supporting them. Therefore, the heads rub on the drum surface during stop/ start cycles and remain in contact throughout down periods. Obviously, the tension of the heads against the surface and the resultant friction varies with temperature. The former condition leads to wear and eventual failure of the drum coating and/or the head polepieces; the latter provides an opportunity for the heads to freeze to the drum surface under operating conditions where frost might be produced - a condition that almost always leads to motor failures and coating damage. The Auto-Lift drum-head spacing mechanism overcomes these disadvantages by bringing the recording surface into close proximity of the heads only when the drum has reached a speed high enough to provide an adequate laminar air film (or "air bearing" support). An essential design feature of the Auto-Lift drum is its tapered recording surface design, a proprietary Bryant structural arrangement which has long permitted technicians to adjust fixed heads by manually positioning the drum rather than the heads. In the case of Auto-Lift Drums, however, flying heads are used and the drum is automatically moved up and down by the self-regulating drum-head spacing mechanism which is contained entirely within the drum itself. #### Operation of the Auto-Lift Mechanism The mechanism for moving the drum axially comprises a pair of simple scissor links which are straightened out by centrifugal force as the drum accelerates to approximately 75% of its operating speed. Straightening of the links raises the drum against a precision stop which defines its operating position. Thus, repeatability of the track location is exact. Spring tension is used to collapse the links and lower the drum as it slows down to approximately 65% of operating speed. In the static, or down position, the drum surface is 0.010 inch or more from the heads. By the time the drum rises to the up position, the heads have gone into a flying attitude approximately 0.0002 inch from the surface. #### Logic Differences The 9367B uses the same coupler and selection unit as the 9367C. The only difference in logic would occur on the largest capacity drum, 9367-04. This drum thus contains 512 heads which utilize 128 bands. (Addresses 00-177) therefore the head selection matrix must be larger. This is accomplished by the addition of 16 more Y selection circuits. See page 43 for the equations for the first 16 Y selection circuits. The additional logic required is given on the following page. $Y17 = A11 \overline{A12} \overline{A13} \overline{A14} \overline{A15}$ $Y18 = A11 \overline{A12} \overline{A13} \overline{A14} A15$ \vdots \vdots Y32 = A11 A12 A13 A14 A15 The following table may be used for finding the X and Y selection circuits utilized for any given band address in the RAD Model 9367B. | | | | | | | 1 | |--------------|---|--|--|---|---
--| | | Channel #1 | X01 X02 | X21 X22 | X11 X12 | X31 X32 | | | X | Channel #2 | X03 X04 | X23 X24 | X13 X14 | X33 X34 | | | SELEUM | Channel #3 | X05 X06 | X25 X26 | X15 X16 | X35 X36 | | | | Channel #4 | X07 X08 | X27 X28 | X17 X18 | X37 X38 | | | | | | | *** | | A Constitution of the Cons | | | 110.1 | | | | | | | | <u>Y01</u> | 0 | 1 1 | 2 | 3 | | | | 702 | 4 | 5 | 6 | 7 | | | | <u> </u> | 10 | 11 | 12 | 13 - | • | | | <u> 704</u> | 14 | 15 | 16 | 17 | | | | ¥05 | 20 | 21 | 22 | 23 | EAND | | * - m*
*- | I 06 | 24 | 25 | 26 | 27 | | | | ¥07 | 30 | 31 | 32 | 33 | SELECTED | | SELECT | ⊻08 | 34 | 35 | 36 | 37 | | | | Y09 | 40 | 41 | 42 | 43 | | | | 710 | 44 | 45 | 46 | 47 | | | | ¥11 | 50 | 51 | 52 | 53 | | | | ¥12 | 54 | 55 | 56 | 57 | | | | ¥13 | 60 | 61 | 62 | 6 3 | | | | Y14 | 64 | 65 | 66 | 67 | | | | ¥15 | 70 | 71 | 72 | 73 | | | | Y16 | 74 | 75 | 7 6 | 77 | | | | | | | | | | | | Channel #1 | X41 X42 | X61 X62 | X51 X52 | X71 X72 | | | X | Channel #2 | X43 X44 | X63 X64 | X53 X54 | X73 X74 | | | SELECT | Channe1 #3 | X45 X46 | X65 X66 | X55 X56 | X75 X76 | | | | Channel #4 | X47 X48 | X67 X68 | X57 X58 | X77 X78 | | | | | | | 137 X36 | | | | | | | | AST ASO | | | | | ¥17 | 100 | 101 | 102 | 103 | | | | Y18 | 100 | 101
105 | 102
106 | 103
107 | | | | Y18
Y19 | 100
104
110 | 101
105
111 | 102
106
112 | 103 | alangus dender-bre der aberdaren erreke- <u>da</u> n aberd | | | Y18
Y19
Y20 | 100
104
110
114 | 101
105
111
115 | 102
106
112
116 | 103
107
113
117 | AND | | X . | Y18
Y19
Y20
Y21 | 100
104
110 | 101
105
111 | 102
106
112 | 103
107
113 | AAND | | ·- | Y18
Y19
Y20
Y21
Y22 | 100
104
110
114
120
124 | 101
105
111
115
121
125 | 102
106
112
116
122
126 | 103
107
113
117
123
127 | AAND
SELECTED | | Y
SELECT | Y18
Y19
Y20
Y21
W22
Y23 | 100
104
110
114
120
124
130 | 101
105
111
115
121
125
131 | 102
106
112
116
122 | 103
107
113
117
123 | | | ·- | Y18
Y19
Y20
Y21
Y22
Y23
Y24 | 100
104
110
114
120
124 | 101
105
111
115
121
125 | 102
106
112
116
122
126 | 103
107
113
117
123
127 | | | | Y18
Y19
Y20
Y21
W22
Y23 | 100
104
110
114
120
124
130 | 101
105
111
115
121
125
131 | 102
106
112
116
122
126
132 | 103
107
113
117
123
127
133 | | | ·- | Y18
Y19
Y20
Y21
Y22
Y23
Y24 | 100
104
110
114
120
124
130
134 | 101
105
111
115
121
125
131
135 | 102
106
112
116
122
126
132
136 | 103
107
113
117
123
127
133
137 | | | ·- | Y18
Y19
Y20
Y21
Y22
Y23
Y24
Y25 | 100
104
110
114
120
124
130
134
140 | 101
105
111
115
121
125
131
135
141 | 102
106
112
116
122
126
132
136
142 | 103
107
113
117
123
127
133
137
143 | | | ·- | Y18
Y19
Y20
Y21
Y22
Y23
Y24
Y25
Y26 | 100
104
110
114
120
124
130
134
140 | 101
105
111
115
121
125
131
135
141 | 102
106
112
116
122
126
132
136
142 | 103
107
113
117
123
127
133
137
143
147
153 | | | | Y18 Y19 Y20 Y21 Z22 Y23 Y24 Y25 Y26 Y27 | 100
104
110
114
120
124
130
134
140
144 | 101
105
111
115
121
125
131
135
141
145 | 102
106
112
116
122
126
132
136
142
146
152 | 103
107
113
117
123
127
133
137
143
147
153
157 | | | | Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 | 100
104
110
114
120
124
130
134
140
144
150 | 101
105
111
115
121
125
131
135
141
145
151
155 | 102
106
112
116
122
126
132
136
142
146
152 | 103
107
113
117
123
127
133
137
143
147
153
157
163 | | | | Y18 Y19 Y20 Y21 Z22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 | 100
104
110
114
120
124
130
134
140
144
150
154 | 101
105
111
115
121
125
131
135
141
145
151 | 102
106
112
116
122
126
132
136
142
146
152 | 103
107
113
117
123
127
133
137
143
147
153
157 | | Table A-2 X & Y Driver Selection Chart For Bryant Drum (9367B)